15 kV n-GTOs in 4H-SiC

2019 ◽  
Vol 963 ◽  
pp. 651-654 ◽  
Author(s):  
Sei Hyung Ryu ◽  
Daniel J. Lichtenwalner ◽  
Michael O’Loughlin ◽  
Craig Capell ◽  
Jim Richmond ◽  
...  

High performance 15 kV n-GTOs were demonstrated for the first time in 4H-SiC. The device utilized a 140 μm thick, lightly doped n-type drift layer, with 1450°C lifetime enhancement oxidation, which resulted in a carrier lifetime of 17.5 μs. The p+ backside injector layer was thinned to minimize parasitic resistances. A room temperature forward voltage drop of 5.18 V was observed at a current density of 100A/cm2. A 1 cm2 device showed a leakage current of 0.17 μA at 15 kV. The 4H-SiC n-GTO showed latching characteristics, and showed a turn-off time of 170 ns in a resistive load switching setup, which represents about a factor of 45 improvement in turn-off speed over 4H-SiC p-GTOs with comparable voltage and current ratings.

2012 ◽  
Vol 717-720 ◽  
pp. 1059-1064 ◽  
Author(s):  
Sei Hyung Ryu ◽  
Lin Cheng ◽  
Sarit Dhar ◽  
Craig Capell ◽  
Charlotte Jonas ◽  
...  

We present our recent developments in 4H-SiC power DMOSFETs. 4H-SiC DMOSFETs with a room temperature specific on-resistance of 3.7 mΩ-cm2 with a gate bias of 20 V, and an avalanche voltage of 1550 V with gate shorted to source, was demonstrated. A threshold voltage of 3.5 V was extracted from the power DMOSFET, and a subthreshold swing of 200 mV/dec was measured. The device was successfully scaled to an active area of 0.4 cm2, and the resulting device showed a drain current of 377 A at a forward voltage drop of 3.8 V at 25oC.


2014 ◽  
Vol 778-780 ◽  
pp. 1038-1041 ◽  
Author(s):  
Tadayoshi Deguchi ◽  
Shuji Katakami ◽  
Hiroyuki Fujisawa ◽  
Kensuke Takenaka ◽  
Hitoshi Ishimori ◽  
...  

High-voltage SiC p-channel insulated-gate bipolar transistors (p-IGBT) utilizing current-spreading layer (CSL) formed by ion implantation are fabricated and their properties characterized. A high blocking voltage of 15 kV is achieved at room temperature by optimizing the JFET length. An ampere-class p-IGBT exhibited a low forward voltage drop of 8.5 V at 100 A/cm2 and a low differential specific on-resistance of 33 mΩ cm2 at 250 °C, while these values were high at room temperature. For further reduction of the forward voltage drop in the on-state and temperature stability, the temperature dependence of the JFET effect and carrier lifetime in p-IGBTs are investigated. Optimization of the JFET length using an epitaxial CSL, instead of applying ion implantation and lifetime enhancement, could lead to a further reduction of the forward voltage drop.


2005 ◽  
Vol 483-485 ◽  
pp. 901-904 ◽  
Author(s):  
Sumi Krishnaswami ◽  
Anant K. Agarwal ◽  
Craig Capell ◽  
Jim Richmond ◽  
Sei Hyung Ryu ◽  
...  

1000 V Bipolar Junction Transistor and integrated Darlington pairs with high current gain have been developed in 4H-SiC. The 3.38 mm x 3.38 mm BJT devices with an active area of 3 mm x 3 mm showed a forward on-current of 30 A, which corresponds to a current density of 333 A/cm2, at a forward voltage drop of 2 V. A common-emitter current gain of 40 was measured on these devices. A specific on-resistance of 6.0 mW-cm2 was observed at room temperature. The onresistance increases at higher temperatures, while the current gain decreases to 30 at 275°C. In addition, an integrated Darlington pair with an active area of 3 mm x 3 mm showed a collector current of 30 A at a forward drop of 4 V at room temperature. A current gain of 2400 was measured on these devices. A BVCEO of 1000 V was measured on both of these devices.


1995 ◽  
Vol 42 (6) ◽  
pp. 1174-1179 ◽  
Author(s):  
J. Linnros ◽  
R. Revsater ◽  
L. Heijkenskjold ◽  
P. Norlin

2012 ◽  
Vol 717-720 ◽  
pp. 953-956 ◽  
Author(s):  
Alex V. Bolotnikov ◽  
Peter A. Losee ◽  
Kevin Matocha ◽  
Jeff Nasadoski ◽  
John Glaser ◽  
...  

This paper presents a study of performance and scalability of 8kV SiC PIN diodes focusing on area-dependent yield and sensitivity to material properties variation. Successfully fabricated 18 and 36 mm2 SiC-PiN diodes exhibited avalanche breakdown above 8 kV and < 5V forward voltage drop at 100 A/cm2 current density. The fast switching operation of these diodes up to ~5 kHz frequency is evidenced by reverse recovery measurements with by double-pulse inductive switching tests. The devices exhibit 0.142 and 0.169 uC/cm2 stored charge at room temperature and 125oC, respectively, when turned-off from Jf = 100A/cm2 to Vr = 2.1 kV. The measured diode breakdown voltage exhibited location and size dependent yield, indicating the necessity of material quality improvements for production.


2010 ◽  
Vol 645-648 ◽  
pp. 905-908 ◽  
Author(s):  
Gil Yong Chung ◽  
Mark J. Loboda ◽  
Siddarth G. Sundaresan ◽  
Ranbir Singh

Correlation between carrier lifetime and forward voltage drop in 4H-SiC PiN diodes has been investigated. PiN diodes from the drift layer of 20 m shows breakdown voltage of 3.3 kV and forward voltage drop as low as 3.13 V at 100A/cm2. Variation of calculated forward voltage drop ( ) from measured carrier lifetimes is very comparable to measured of fully processed PiN diodes. Measured carrier lifetime and of PiN diodes also show good spatial correlation. Wafer level lifetime mapping can be employed to assess and predict of PiN diodes.


2013 ◽  
Vol 740-742 ◽  
pp. 895-898 ◽  
Author(s):  
Lin Cheng ◽  
Anant K. Agarwal ◽  
Michael J. O'Loughlin ◽  
Craig Capell ◽  
Khiem Lam ◽  
...  

In this work, we report our recently developed 16 kV, 1 cm2, 4H-SiC PiN diode results. The SiC PiN diode was built on a 120 µm, 2×1014/cm3 doped n-type SiC drift layer with a device active area of 0.5175 cm2. Forward conduction of the PiN diode was characterized at temperatures from 20°C to 200°C. At high injection-current density (JF) of 350 ~ 400 A/cm2, the differential on-resistance (RON,diff) of the SiC PiN diode decreased from 6.08 mΩ·cm2 at 20°C to 5.12 mΩ·cm2 at 200°C, resulting in a very small average temperature coefficient of –5.33 µΩ·cm2/°C, while the forward voltage drop (VF) at 100 A/cm2 reduced from 4.77 V at 20°C to 4.17 V at 200°C. This is due to an increasing high-level carrier lifetime with an increase in temperature, resulting in reduced forward voltage drop. We also observed lower RON,diff at higher injection-current densities, suggesting that a higher carrier lifetime is needed in this lightly doped n-type SiC thick epi-layer in order to achieve full conductivity modulation. The anode to cathode reverse blocking leakage current was measured as 0.9 µA at 16 kV at room temperature.


2014 ◽  
Vol 778-780 ◽  
pp. 135-138 ◽  
Author(s):  
Tetsuya Miyazawa ◽  
Shi Yang Ji ◽  
Kazutoshi Kojima ◽  
Yuuki Ishida ◽  
Koji Nakayama ◽  
...  

The epitaxial growth of thick multi-layer 4H-SiC to fabricate very high-voltage C-face n-channel IGBTs is demonstrated using 3-inch diameter wafers. We employ an inverted-growth process, which enables the on-state voltage of resultant IGBTs to be reduced. Furthermore a long minority carrier lifetime (> 10 μs) and a low-resistance p+epilayer can reduce the forward voltage drop of the IGBTs. The small forward voltage drop is demonstrated particularly at high temperatures by fabricating and characterizing simple pin diodes using the epi-wafer.


2014 ◽  
Vol 64 (7) ◽  
pp. 223-236 ◽  
Author(s):  
T. Gachovska ◽  
J. L. Hudgins

2010 ◽  
Vol 645-648 ◽  
pp. 1025-1028 ◽  
Author(s):  
Qing Chun Jon Zhang ◽  
Robert Callanan ◽  
Anant K. Agarwal ◽  
Albert A. Burk ◽  
Michael J. O'Loughlin ◽  
...  

4H-SiC Bipolar Junction Transistors (BJTs) and hybrid Darlington Transistors with 10 kV/10 A capability have been demonstrated for the first time. The SiC BJT (chip size: 0.75 cm2 with an active area of 0.336 cm2) conducts a collector current of 10 A (~ 30 A/cm2) with a forward voltage drop of 4.0 V (forced current gain βforced: 20) corresponding to a specific on-resistance of ~ 130 mΩ•cm2 at 25°C. The DC current gain, β, at a collector voltage of 15 V is measured to be 28 at a base current of 1 A. Both open emitter breakdown voltage (BVCBO) and open base breakdown voltage (BVCEO) of ~10 kV have been achieved. The 10 kV SiC Darlington transistor pair consists of a 10 A SiC BJT as the output device and a 1 A SiC BJT as the driver. The forward voltage drop of 4.5 V is measured at 10 A of collector current. The DC forced current gain at the collector voltage of 5.0 V was measured to be 440 at room temperature.


Sign in / Sign up

Export Citation Format

Share Document