Effects of Co Doping on the Thermoelectric Properties of Cu3SbSe4 at Moderate Temperature

2020 ◽  
Vol 993 ◽  
pp. 899-905
Author(s):  
Lin Bo ◽  
Wen Ying Wang ◽  
Yong Peng Wang ◽  
Lin Wang ◽  
Min Zuo ◽  
...  

Cu3SbSe4-based thermoelectric materials are a class of thermoelectric materials with diamond-like structure which exhibit high thermoelectric properties at moderate temperature region and have broad research prospects. In this study, the p-type Co-doped Cu3-xCoxSbSe4 (x=0-0.015) thermoelectric materials were fabricated by melting-annealing-ball milling-hot pressing process to investigate the effects of Co doping on the thermoelectric properties of Cu3SbSe4. It is found that the average power factor of Cu2.995Co0.005SbSe4 was increased by 30% compared with the pure sample, indicating that Co doping had a great effect on the electrical properties of Cu3SbSe4. The energy gap of ternary p-type semiconductor Cu3SbSe4 was around 0.27eV. As the Co content increasing, the lattice distortion enhanced the phonon scattering, which led to the decrease in lattice thermal conductivity. The maximum thermoelectric figure of merit, ZTmax, reached 0.46 at 600K for the Cu2.995Co0.005SbSe4.

2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


2010 ◽  
Vol 650 ◽  
pp. 126-131 ◽  
Author(s):  
Hong Fu ◽  
Peng Zhan Ying ◽  
J.L. Cui ◽  
Y.M. Yan ◽  
X.J. Zhang

Solid solution formation is a common and effective way to reduce the lattice thermal conductivity for thermoelectric materials because of additional phonon scattering by point defects and grain boundaries. In the present work we prepared In2Te3–SnTe compounds using a mild solidification technique and evaluated their thermoelectric properties in the temperature range from 318705 K. Measurements reveal that the transport properties are strongly dependent on the chemical composition  In2Te3 content, and lattice thermal conductivity significantly reduces above a minimum In2Te3 concentration, which can possibly be explained by an introduction of the vacancy on the indium sublattice and periodical vacancy planes. The highest thermoelectric figure of merit ZT of 0.19 can be achieved at 705 K, and a big improvement of In2Te3 based alloys would be expected if a proper optimization to the chemical compositions and structures were made.


RSC Advances ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 3304-3314
Author(s):  
Enamul Haque ◽  
Mizanur Rahaman

Weak anharmonicity: the weak anharmonicity leads to weak phonon scattering in SrGaSnH. Thus, SrGaSnH intrinsically possesses a high lattice thermal conductivity (kl).. Such large κl dramatically reduces the thermoelectric figure of merit.


2006 ◽  
Vol 510-511 ◽  
pp. 1070-1073 ◽  
Author(s):  
Il Ho Kim ◽  
J.B. Park ◽  
Tae Whan Hong ◽  
Soon Chul Ur ◽  
Young Geun Lee ◽  
...  

Zn4Sb3 was successfully produced by a hot pressing technique, and its thermoelectric properties were investigated in the temperature range from 4K to 300K. The Seebeck coefficient, electrical conductivity, thermal conductivity, and thermoelectric figure of merit showed a discontinuity in variation at 242K, indicating the α-Zn4Sb3 to β-Zn4Sb3 phase transformation. Lattice thermal conductivity was found to be dominant in the total thermal conductivity of Zn4Sb3. Therefore, it is expected that thermoelectric properties can be improved by reducing the lattice thermal conductivity inducing phonon scattering centers.


2005 ◽  
Vol 886 ◽  
Author(s):  
Shinsuke Yamanaka ◽  
Ken Kurosaki ◽  
Atsuko Kosuga ◽  
Keita Goto ◽  
Hiroaki Muta

ABSTRACTWe have prepared polycrystalline bulk samples of various thallium compounds and measured their thermoelectric properties. The most remarkable point of the thermoelectric properties of the thallium compounds is the extremely low thermal conductivity. The state-of-the-art thermoelectric materials such as Bi2Te3 and TAGS materials indicate relatively low the thermal conductivity, around 1.5 W/m/K. However, the thermal conductivity of the thallium compounds is below 0.5 W/m/K; especially that of silver thallium tellurides is around 0.25 W/m/K at room temperature. This extremely low thermal conductivity leads a great advantage for an enhancement of the thermoelectric performance. In this paper, we report on the properties of some thallium compounds selected for study as novel thermoelectric materials. One of these compounds seems to have a thermoelectric figure of merit comparable to those of state-of-the-art materials.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 864 ◽  
Author(s):  
Eric Alleno

Besides alloying, nanostructuring was implemented to improve the thermoelectric properties in Fe2VAl. This Heusler alloy indeed displays a thermoelectric figure of merit too small for applications (ZT ~ 0.1 at 300 K) which is caused by a large lattice thermal conductivity (λL = 27 W·m−1·K−1 at 300 K). The effect of nanostructuring on the microstructure and on the thermoelectric properties of alloyed Fe2VAl are therefore reviewed. By mechanical alloying followed by spark plasma sintering, the average grain size (D) was decreased to D ~ 300–400 nm in Fe2VAl0.9Si0.1, Fe2VAl0.9Si0.07Sb0.03, Fe2V1.05Al0.95, and Fe2V0.9W0.1Al. As expected, phonon scattering at the numerous grain boundaries lead to a strong decrease in the lattice thermal conductivity, which reached values as small as λL = 3.3 W·m−1·K−1. However, in all the reviewed examples, the thermoelectric figure of merit (ZT) is only marginally or not even improved when comparing to non-nanostructured samples because the electrical resistivity also increases upon nanostructuring. A significantly improved ZT = 0.3 at 500 K was only recently observed in severely deformed Fe2VAl0.95Ta0.05 by high pressure torsion because the very fine microstructure (D ~ 100 nm) strongly enhanced the thermal conductivity reduction.


2000 ◽  
Vol 15 (12) ◽  
pp. 2789-2793 ◽  
Author(s):  
G. Jeffrey Snyder ◽  
T. Caillat ◽  
J-P. Fleurial

The compounds GexNbTe2 (0.39 ≤ x ≤ 0.53) have been studied for their thermoelectric properties. By changing x, the carrier concentration can be adjusted so that the material changes from a p-type metal to a p-type semiconductor. The maximum germanium concentration at about Ge0.5NbTe2 is also the most semiconducting composition. High- and low-temperature electrical resistivity, Hall effect, Seebeck coefficient, and thermal conductivity were measured. Evidence of electronic ordering was found in some samples. The thermal conductivity is reasonably low and glasslike with room temperature values around 20–25 mW/cm K. However, the power factor is too low to compete with state-of-the-art materials. The maximum thermoelectric figure of merit, ZT found in these compounds is about 0.12. The low ZT can be traced to the low carrier mobility of about 10 cm2 /Vs. The related compounds Si0.5NbTe2 and Ge0.5TaTe2 were also studied.


1987 ◽  
Vol 97 ◽  
Author(s):  
L. R. Danielson ◽  
M. N. Alexander ◽  
R. A. Lockwood ◽  
C. Wood

ABSTRACTThe electrical resistivities and the Seebeck coefficients of SmS1−xAsx alloys (0 ≤ x ≤ 1) have been measured between room temperature and 1273 K as part of a continuing search for high temperature materials having a high thermoelectric figure of merit and suitable for space power applications. SmS is an n-type semiconductor with an energy gap measured to be 0.16 eV. SmAs and SmS0.2As0.8 are itinerant electron conductors. Hysteresis between high and low resistivity states has been observed in our SmS0.9As0.1 and SmS0.8As0.2 samples. Alloys with x ≤ 0.05 appear to be the most promising high temperature thermoelectric materials.


2007 ◽  
Vol 534-536 ◽  
pp. 161-164 ◽  
Author(s):  
Taek Soo Kim ◽  
Byong Sun Chun

N-type Bi2Te3-Sb2Te3 solid solutions doped with CdCl2 was prepared by melt spinning, crushing and vacuum sintering processes. Microstructure, bending strength and thermoelectric property were investigated as a function of the doping quantity from 0.03wt.% to 0.10wt.% and sintering temperature from 400oC to 500oC, and finally compared with those of conventionally fabricated alloys. The alloy showed a good structural homogeneity as well as bending strength of 3.88Kgf/mm2. The highest thermoelectric figure of merit was obtained by doping 0.03wt.% and sintering at 500oC.


2001 ◽  
Vol 16 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Xinfeng Tang ◽  
Lidong Chen ◽  
Takashi Goto ◽  
Toshio Hirai

Single-phase filled skutterudite compounds, CeyFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.74), were synthesized by a melting method. The effects of Fe content and Ce filling fraction on the thermoelectric properties of CeyFexCo4−xSb12 were investigated. The lattice thermal conductivity of Ce-saturated CeyFexCo4−xSb12, y being at the maximum corresponding to x, decreased with increasing Fe content (x) and reached its minimum at about x = 1.5. When x was 1.5, lattice thermal conductivity decreased with increasing Ce filling fraction till y = 0.3 and then began to increase after reaching the minimum at y = 0.3. Hole concentration and electrical conductivity of Cey Fe1.5Co2.5Sb12 decreased with increasing Ce filling fraction. The Seebeck coefficient increased with increasing Ce filling fraction. The greatest dimensionless thermoelectric figure of merit T value of 1.1 was obtained at 750 K for the composition of Ce0.28Fe1.52Co2.48Sb12.


Sign in / Sign up

Export Citation Format

Share Document