Specific Properties of Industrial High-Damping Fe-Al Steels

2006 ◽  
Vol 115 ◽  
pp. 57-62
Author(s):  
V.A. Udovenko ◽  
I.B. Chudakov

It is shown that industrial high damping steels based on the Fe-Al metallic system are characterized by a very high level of internal dissipation of elastic energy. The specific damping capacity of industrial steels exceeds 40 % and their damping properties are close to those of highpurity damping alloys based on the Fe-Al system. Mechanical properties of damping steels are similar to those of conventional construction steels. High level of properties of damping steels can be explained by their specific crystalline and magnetic structure.

2008 ◽  
Vol 137 ◽  
pp. 119-128 ◽  
Author(s):  
V.A. Udovenko ◽  
I.B. Chudakov ◽  
N.M. Alexandrova ◽  
R.V. Kakabadze ◽  
N.N. Perevalov

Industrial high damping steels based on the Fe - Al metallic system have been studied. The optimization of the crystalline structure of the industrial damping steels has been shown to be very important for the achievement of high mechanical properties including high fatigue resistance. In the same time the achievement of high damping properties strongly depends on the magnetic domain structure of the material and, consequently, on the heat treatment procedure.


2019 ◽  
Vol 1 (34) ◽  
pp. 391-422
Author(s):  
اشواق حسن حميد صالح

Climate change and its impact on water resources is the problem of the times. Therefore, this study is concerned with the subject of climate change and its impact on the water ration of the grape harvest in Diyala Governorate. The study was based on the data of the Khanaqin climate station for the period 1973-2017, (1986-2017) due to lack of data at governorate level. The general trend of the elements of the climate and its effect on the water formula was extracted. The equation of change was extracted for the duration of the study. The statistical analysis was also used between the elements of the climate (actual brightness, normal temperature, micro and maximum degrees Celsius, wind speed m / s, relative humidity% The results of the statistical analysis confirm that the water ration for the study area is based mainly on the X7 evaporation / netting variable, which is affected by a set of independent variables X1 Solar Brightness X4 X5 Extreme Temperature Wind Speed ​​3X Minimal Temperature and Very High Level .


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
2000 ◽  
Vol 49 (1) ◽  

Abstract Kaiser Aluminum Alloy 7050 has very high mechanical properties including tensile strength, high fracture toughness, and a high resistance to exfoliation and stress-corrosion cracking. The alloy is typically used in aircraft structural parts. This datasheet provides information on composition, physical properties, hardness, tensile properties, and shear strength as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, and joining. Filing Code: AL-366. Producer or source: Tennalum, A Division of Kaiser Aluminum.


Alloy Digest ◽  
1963 ◽  
Vol 12 (12) ◽  

Abstract Timken 16-15-6 is a non-magnetic, austenitic, corrosion and heat resistant steel having high creep resistance at elevated temperatures and good corrosion and oxidation resistance. It age-hardens at elevated temperatures after solution quenching, and possesses very high mechanical properties. This datasheet provides information on composition, microstructure, hardness, and tensile properties as well as creep. It also includes information on forming, heat treating, machining, and joining. Filing Code: SS-150. Producer or source: Timken Roller Bearing Company.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 253-260 ◽  
Author(s):  
P. Buffière ◽  
R. Moletta

An anaerobic inverse turbulent bed, in which the biogas only ensures fluidisation of floating carrier particles, was investigated for carbon removal kinetics and for biofilm growth and detachment. The range of operation of the reactor was kept within 5 and 30 kgCOD· m−3· d−1, with Hydraulic Retention Times between 0.28 and 1 day. The carbon removal efficiency remained between 70 and 85%. Biofilm size were rather low (between 5 and 30 μm) while biofilm density reached very high values (over 80 kgVS· m−3). The biofilm size and density varied with increasing carbon removal rates with opposite trends; as biofilm size increases, its density decreases. On the one hand, biomass activity within the reactor was kept at a high level, (between 0.23 and 0.75 kgTOC· kgVS· d−1, i.e. between 0.6 and 1.85 kgCOD·kgVS · d−1).This result indicates that high turbulence and shear may favour growth of thin, dense and active biofilms. It is thus an interesting tool for biomass control. On the other hand, volatile solid detachment increases quasi linearly with carbon removal rate and the total amount of solid in the reactor levels off at high OLR. This means that detachment could be a limit of the process at higher organic loading rates.


Author(s):  
Martin L. Weitzman

In theory, and under some very strong assumptions, there exists a tight quantitative relationship among the following four fundamental economic concepts: (1) ‘wealth’; (2) ‘income’; (3) ‘sustainability’; (4) ‘accounting’. These four basic concepts are placed in quotation marks here because a necessary first step will be to carefully and rigorously define what exactly is meant by each. This chapter reviews what is known about this important fourfold quantitative relationship in an ultra-simplified setting. It identifies some basic applications of this simplified economic theory of wealth and income (and sustainability and accounting). While the contents of this chapter are expressed at a very high level of abstraction and require many restrictive assumptions, the fundamental fourfold relationship it sharply highlights should be useful for conceptualizing, at least in principle, what is ‘wealth’ and what is its theoretical relationship to ‘income’, ‘sustainability’, and ‘accounting’.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 79
Author(s):  
Ruopeng Lu ◽  
Kai Jiao ◽  
Yuhong Zhao ◽  
Kun Li ◽  
Keyu Yao ◽  
...  

Mg alloys with fine mechanical properties and high damping capacities are essential in engineering applications. In this work, Mg–Zn–Y based alloys with lamellar long period stacking ordered (LPSO) phases were obtained by different processes. The results show that a more lamellar second phase can be obtained in the samples with more solid solution atoms. The density of the lamellar LPSO phase has an obvious effect on the damping of the magnesium alloy. The compact LPSO phase is not conducive to dislocation damping, but sparse lamellar phases can improve the damping capacity without significantly reducing the mechanical properties. The Mg95.3Zn2Y2.7 alloy with lamellar LPSO phases and ~100 μm grain size exhibited a fine damping property of 0.110 at ε = 10–3.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1249
Author(s):  
Maofu Zhang ◽  
Yanfei Han ◽  
Chuanbao Jia ◽  
Shengfa Dong ◽  
Sergii Maksimov ◽  
...  

In underwater wet welding, the unstable welding process caused by the generation and rupture of bubbles and the chilling effect of water on the welding area result in low quality of welded joints, which makes it difficult to meet the practical application of marine engineering. To improve the process stability and joining quality, a mixture of welding flux with a water glass or epoxy resin was placed on the welding zone before underwater welding. In this paper, welds’ appearance, geometry statistics of welds’ formation, welding process stability, slag structure, microstructure, pores and mechanical properties were investigated. It was found that with the addition of water glass in the mixture, the penetration of weld was effectively increased, and the frequency of arc extinction was reduced. Though the porosity rose to a relatively high level, the joints’ comprehensive mechanical properties were not significantly improved. Notably, the applied epoxy resin completely isolated the surrounding water from the welding area, which greatly improved process stability. Furthermore, it benefited from the microstructure filled with massive acicular ferrite, the average elongation and room temperature impact toughness increased by 178.4%, and 69.1% compared with underwater wet welding, respectively, and the bending angle of the joint reaches to 180°.


Sign in / Sign up

Export Citation Format

Share Document