Bonding Strength of W-Cu Joint by PECS Method

2007 ◽  
Vol 127 ◽  
pp. 271-276 ◽  
Author(s):  
Yasushi Fukuzawa ◽  
Shigeru Nagasawa ◽  
Shigehiko Takaoka

To make the tungsten and copper joint, several methods has been tried using the diffusion bonding system. When the thin plating Ni layer was used as the interlayer on tungsten surface, it bonded with copper under low bonding temperature and short holding duration by the pulse electric current sintering (PECS) machine. The effects of bonding temperature, bonding duration time, bonding pressure and the difference of specimen shape on the bonding strength were investigated. The tensile strength of joints depended on these factors. Highest strength attained to the copper tensile strength.

2005 ◽  
Vol 502 ◽  
pp. 443-448
Author(s):  
Yasushi Fukuzawa ◽  
Shigeru Nagasawa ◽  
Masahiro Watanabe ◽  
Shigehiko Takaoka

To develop the new bonding method under low bonding temperature and short holding duration, pulse electric current sintering (PECS) method is applied. The Ni plating layer was used as the interlayer. The following experimental factors were researched:(1) Thickness of Ni plating layer, (2) Bonding temperature, (3) Bonding pressure and (4) Heat treatment after plating. The bonding strength of W-Ni plate-Cu joint could be obtained under low bonding temperature of 773 K and short bonding duration of 10 min.


2015 ◽  
Vol 35 (3) ◽  
pp. 267-275 ◽  
Author(s):  
Chunpeng Chu ◽  
Bingyan Jiang ◽  
Laiyu Zhu ◽  
Fengze Jiang

Abstract A novel combination of thermal bonding and in-mold assembly technology was created to produce microfluidic chips out of polymethylmethacrylate (PMMA), which is named “in-mold bonding technology”. In-mold bonding experiments of microfluidic chips were carried out to investigate the influences of bonding process parameters on the deformation and bonding strength of microchannels. The results show that bonding temperature has the greatest impact on the deformation of microchannels, while bonding pressure and bonding time have more influence on deformation in height than in top width. Considering the bonding strength, the bonding temperature and the bonding pressure have more impact than the bonding time. The time is crucial for the sealing of the chips. By setting the bonding parameters reasonably, the microchannel deformation is <10%, while the bonding strength of the chips is 350 kPa. The production cycle of the chip is reduced to <5 min.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1266 ◽  
Author(s):  
Han Mei ◽  
Lihui Lang ◽  
Xiaoxing Li ◽  
Hasnain Ali Mirza ◽  
Xiaoguang Yang

Due to the acceptable high-temperature deformation resistance of Inconel 718, its welding parameters such as bonding temperature and pressure are inevitably higher than those of general metals. As a result of the existing punitive processing environment, it is essential to control the deformation of parts while ensuring the bonding performance. In this research, diffusion bonding experiments based on the Taguchi method (TM) are conducted, and the uniaxial tensile strength and deformation ratio of the experimental joints are measured. According to experimental data, a deep neural network (DNN) was trained to characterize the nonlinear relationship between the diffusion bonding process parameters and the diffusion bonding strength and deformation ratio, where the overall correlation coefficient came out to be 0.99913. The double-factors analysis of bonding temperature–bonding pressure based on the prediction results of the DNN shows that the temperature increment of the diffusion bonding of Inconel 718 significantly increases the deformation ratio of the diffusion bonding joints. Therefore, during the multi-objective optimization of the bonding performance and deformation of components, priority should be given to optimizing the bonding pressure and duration only.


Author(s):  
A. Sittaramane ◽  
G. Mahendran

This paper focused to determine optimal bonding parameters based on Taguchi method for maximizing bonding strength. The experiments were conducted on diffusion bonding machine using aluminium fly ash (AFA) composites. Three bonding parameters such as temperature, pressure and time, each at three levels were examined. Taguchi L27 orthogonal array was used as a design of experiment. The response table and the analysis of variance (ANOVA) were calculated to determine which process parameters significantly affect the bonding strength and also the % contribution of each parameter. The results show that the combination of factors and their levels of A2B3C3 i.e. the bonding done at a temperature of 475°C with a pressure of 10 MPa and time for 20 minutes yielded the optimum i.e. maximum bonding strength. Finally, ANOVA results indicated that all three process parameters significantly affected the bonding strength with a maximum contribution from the bonding temperature (85.93%), followed by bonding time (12.6%) and bonding pressure (1.48%). It is also observed that the bonding strength of the diffusion bonding process can be improved effectively through this approach.


2019 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Assiss. Prof. Dr. Sabiha Mahdi Mahdi ◽  
Dr. Firas Abd K. Abd K.

Aim: The aimed study was to evaluate the influence of silver nitrate on surfacehardness and tensile strength of acrylic resins.Materials and methods: A total of 60 specimens were made from heat polymerizingresins. Two mechanical tests were utilized (surface hardness and tensile strength)and 4 experimental groups according to the concentration of silver nitrate used.The specimens without the use of silver nitrate were considered as control. Fortensile strength, all specimens were subjected to force till fracture. For surfacehardness, the specimens were tested via a durometer hardness tester. Allspecimens data were analyzed via ANOVA and Tukey tests.Results: The addition of silver nitrate to acrylic resins reduced significantly thetensile strength. Statistically, highly significant differences were found among allgroups (P≤0.001). Also, the difference between control and experimental groupswas highly significant (P≤0.001). For surface hardness, the silver nitrate improvedthe surface hardness of acrylics. Highly significant differences were statisticallyobserved between control and 900 ppm group (P≤0.001); and among all groups(P≤0.001)with exception that no significant differences between control and150ppm; and between 150ppm and 900ppm groups(P>0.05).Conclusion: The addition of silver nitrate to acrylics reduced significantly the tensilestrength and improved slightly the surface hardness.


2002 ◽  
Vol 224-226 ◽  
pp. 729-734 ◽  
Author(s):  
Dong Ming Zhang ◽  
Zheng Yi Fu ◽  
Yung Cheng Wang ◽  
Qing Jie Zhang ◽  
Jing Kun Guo

2004 ◽  
Vol 449-452 ◽  
pp. 1113-1116 ◽  
Author(s):  
Young Soon Kwon ◽  
Ji Soon Kim ◽  
Jong Jae Park ◽  
Hwan Tae Kim ◽  
Dina V. Dudina

Microstructural change of TiB2-Cu nanocomposite during spark plasma sintering (SPS) was investigated. Under simultaneous action of pressure, temperature and pulse electric current titanium diboride nanoparticles distributed in copper matrix move, agglomerate and form a interpenetrating phase composite with a fine-grained skeleton. Increase of SPS temperatures and holding times promotes the densification of sintered compacts due to local melting of copper matrix.


Sign in / Sign up

Export Citation Format

Share Document