scholarly journals Prediction of Tensile Strength and Deformation of Diffusion Bonding Joint for Inconel 718 Using Deep Neural Network

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1266 ◽  
Author(s):  
Han Mei ◽  
Lihui Lang ◽  
Xiaoxing Li ◽  
Hasnain Ali Mirza ◽  
Xiaoguang Yang

Due to the acceptable high-temperature deformation resistance of Inconel 718, its welding parameters such as bonding temperature and pressure are inevitably higher than those of general metals. As a result of the existing punitive processing environment, it is essential to control the deformation of parts while ensuring the bonding performance. In this research, diffusion bonding experiments based on the Taguchi method (TM) are conducted, and the uniaxial tensile strength and deformation ratio of the experimental joints are measured. According to experimental data, a deep neural network (DNN) was trained to characterize the nonlinear relationship between the diffusion bonding process parameters and the diffusion bonding strength and deformation ratio, where the overall correlation coefficient came out to be 0.99913. The double-factors analysis of bonding temperature–bonding pressure based on the prediction results of the DNN shows that the temperature increment of the diffusion bonding of Inconel 718 significantly increases the deformation ratio of the diffusion bonding joints. Therefore, during the multi-objective optimization of the bonding performance and deformation of components, priority should be given to optimizing the bonding pressure and duration only.

2007 ◽  
Vol 127 ◽  
pp. 271-276 ◽  
Author(s):  
Yasushi Fukuzawa ◽  
Shigeru Nagasawa ◽  
Shigehiko Takaoka

To make the tungsten and copper joint, several methods has been tried using the diffusion bonding system. When the thin plating Ni layer was used as the interlayer on tungsten surface, it bonded with copper under low bonding temperature and short holding duration by the pulse electric current sintering (PECS) machine. The effects of bonding temperature, bonding duration time, bonding pressure and the difference of specimen shape on the bonding strength were investigated. The tensile strength of joints depended on these factors. Highest strength attained to the copper tensile strength.


2019 ◽  
Vol 15 (6) ◽  
pp. 1037-1052
Author(s):  
A. Arun Negemiya ◽  
S. Rajakumar ◽  
V. Balasubramanian

Purpose The purpose of this paper is to develop an empirical relationship for predicting the strength of titanium to austenitic stainless steel fabricated by diffusion bonding (DB) process. Process parameters such as bonding pressure, bonding temperature and holding time play the main role in deciding the joint strength. Design/methodology/approach In this study, three-factors, five-level central composite rotatable design was used to conduct the minimum number of experiments involving all the combinations of parameters. Findings An empirical relationship was developed to predict the lap shear strength (LSS) of the joints incorporating DB process parameters. The developed empirical relationship was optimized using particle swarm optimization (PSO). The optimized value discovered through PSO was compared with the response surface methodology (RSM). The joints produced using bonding pressure of 14 MPa, bonding temperature of 900°C and holding time of 70 min exhibited a maximum LSS of 150.51 MPa in comparison with other joints. This was confirmed by constructing response graphs and contour plots. Originality/value Optimizing the DB parameters using RSM and PSO, PSO gives an accurate result when compared with RSM. Also, a sensitivity analysis is carried out to identify the most influencing parameter for the DB process.


2015 ◽  
Vol 787 ◽  
pp. 495-499 ◽  
Author(s):  
K. Dheenadayalan ◽  
S. Rajakumar ◽  
V. Balasubramanian

In this investigation, Commercially Pure (Cp) titanium was diffusion bonded to AA7075-T6 aluminium alloy at various temperatures of 450, 475, 500, 525 and 5500C, bonding pressure of 17, MPa and holding time of 40 minutes was applied during the diffusion bonding. The effects of reaction temperature, Bonding time and atmosphere on the diffusion welding characteristics of titanium and aluminum have been studied. The maximum Lap shear strength was found to be 89 MPa for the specimen bonded at the temperature of 525°C, Bonding Pressure 17 MPa and Holding time for 40 min.


2008 ◽  
Vol 580-582 ◽  
pp. 295-298
Author(s):  
Gui Sheng Zou ◽  
Yan Ju Wang ◽  
Ai Ping Wu ◽  
Hai Lin Bai ◽  
Nai Jun Hu ◽  
...  

To improve the joining efficiency of Bi-Sr-Ca-Cu-O ( BSCCO) superconducting tapes, a new diffusion bonding technology with a direct uniaxial pressing at high temperature was developed to join 61-filament tapes. It was observed that bonding parameters such as bonding pressure and holding time, significantly affected the critical current ratio (CCRo). A peak CCRo value of 89 % for the lap-joined tapes was achieved at 3 MPa for 2 h when bonding temperature was 800 °C. Compared with the conventional diffusion bonding technology, this new technology remarkably shortened the fabrication period and improved the superconductivity of the joints. The bonding interface and microstructures of the joints were evaluated and correlated to the CCRo. An uniaxial pressing at high temperature was beneficial to interface bonding, and there was an optimal pressure value for the CCRo.


Author(s):  
Nader Nadermanesh ◽  
Abdolhamid Azizi ◽  
Sahebali Manafi

The diffusion bonding of 7075, 6061 and 5083 aluminium alloys to AZ31B magnesium was investigated using copper interlayer. An optical microscope along with scanning electron microscopes, equipped with an energy dispersive spectrometry/electron probe microanalysis, was utilized to characterize the microstructure of the joint. The mechanical properties of the joint were also assessed by micro-hardness and shear strength tests. The results indicate the high effect of temperature on the bonding results; so that, with a small change in temperature, severe changes were observed in the bonding results. A temperature range of 475°C–485°C and a minimum duration of 30 min with a low bonding pressure of 0.4 MPa were identified as advisable process conditions. The joint evaluation revealed the formation of CuAl2, Cu9Al4 and Al-Mg-Cu ternary phases on the aluminium-copper side, as well as Cu2Mg, CuMg2 and Al-Mg-Cu ternary phases on the magnesium-copper side in the reaction layer. When increasing the bonding temperature and duration, the amount of intermetallic compounds and, as a result, the mechanical properties of the joints changed. The highest shear strength and micro-hardness, related to the bonding performed at 480°C and holding time of 45 min, were 31.03 MPa and 167 HV, respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
A. Arun Negemiya ◽  
A. N. Shankar ◽  
B. Guruprasad ◽  
B. Prakash ◽  
S. Dineshkumar ◽  
...  

The diffusion bonding (DB) method is used in this investigation to connect high-temperature dissimilar materials. The existence of difficult-to-remove oxide coatings on the titanium surfaces, as well as the arrangement of breakable metallic interlayers and oxide enclosures inside the bond region, provides the most significant challenges during the transition from AISI304 to Ti-6Al-4V alloying. In addition, an effort was made to advance DB processing maps for the operational connection of Ti-6Al-4V to AISI304 alloys to improve their performance. Joints had been created by combining several process factors, such as bonding temperature (T), bonding pressure (P), and holding time (t), to create diverse designs. Based on the findings, database processing maps were created. This set of processing maps may be used as a rough guideline for selecting appropriate DB process parameters for generating virtuous excellent bonds between Ti-6Al-4V and AISI304 alloys. The maximum lap shear strength (LSS) was achieved at 800°C, 15 MPa, and 45 min.


Author(s):  
A. Sittaramane ◽  
G. Mahendran

This paper focused to determine optimal bonding parameters based on Taguchi method for maximizing bonding strength. The experiments were conducted on diffusion bonding machine using aluminium fly ash (AFA) composites. Three bonding parameters such as temperature, pressure and time, each at three levels were examined. Taguchi L27 orthogonal array was used as a design of experiment. The response table and the analysis of variance (ANOVA) were calculated to determine which process parameters significantly affect the bonding strength and also the % contribution of each parameter. The results show that the combination of factors and their levels of A2B3C3 i.e. the bonding done at a temperature of 475°C with a pressure of 10 MPa and time for 20 minutes yielded the optimum i.e. maximum bonding strength. Finally, ANOVA results indicated that all three process parameters significantly affected the bonding strength with a maximum contribution from the bonding temperature (85.93%), followed by bonding time (12.6%) and bonding pressure (1.48%). It is also observed that the bonding strength of the diffusion bonding process can be improved effectively through this approach.


Crystals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1127
Author(s):  
Shiwei Li ◽  
Xianjun Sun ◽  
Yajie Du ◽  
Yu Peng ◽  
Yipeng Chen ◽  
...  

This study focuses on the diffusion bonding of a CoCrNi-based medium-entropy alloy (MEA) to a DD5 single-crystal superalloy. The microstructure and mechanical properties of the joint diffusion-bonded at variable bonding temperatures were investigated. The formation of diffusion zone, mainly composed of the Ni3(Al, Ti)-type γ′ precipitates and Ni-rich MEA matrix, effectively guaranteed the reliable joining of MEA and DD5 substrates. As the bonding temperature increased, so did the width of the diffusion zone, and the interfacial microvoids significantly closed, representing the enhancement of interface bonding. Both tensile strength and elongation of the joint diffusion-bonded at 1110 °C were superior to those of the joints diffusion-bonded at low temperatures (1020, 1050, and 1080 °C), and the maximum tensile strength and elongation of 1045 MPa and 22.7% were obtained. However, elevated temperature produced an adverse effect that appeared as grain coarsening of the MEA substrate. The ductile fracture of the joint occurred in the MEA substrate (1110 °C), whereas the tensile strength was lower than that of the MEA before diffusion bonding (approximately 1.3 GPa).


2012 ◽  
Vol 706-709 ◽  
pp. 3010-3015 ◽  
Author(s):  
Kazuyoshi Saida ◽  
Hiroyuki Ogiwara ◽  
Kazutoshi Nishimoto

A new bonding technique of titanium and zirconium conducted at low temperatures was developed utilizing the hydrogen-induced transformation. Hydrogen charge treatment of the faying surfaces of titanium and zirconium was conducted with varying the charging time between 3.6-700ks prior to diffusion bonding. Diffusion bonding of hydrogen-charged titanium and zirconium was carried out at 600-800°C for 0.6-1.8ks applying the bonding pressure of 5-10MPa in vacuum. Titanium and zirconium hydrides were formed at faying surfaces after hydrogen charge treatment. The β-transus temperature at faying surfaces of titanium and zirconium was reduced to approx. 450-550°C with hydrogen-charging. The bond layer was phase transformed to a bcc structure (β) at the bonding temperature due to the hydrogen diffusion during bonding process. Grain growth across the prior bond interface was observed in the joints bonded at 750-800°C after hydrogen-charging for 300-500ks. Tensile strength of titanium joints bonded at 800°C attained approx. 70% of the base metal strength (approx. 1.6 times as high as non-charged joints), and corrosion resistance of the joints was comparable to that of the base metal. Furthermore, tensile strength of zirconium joints bonded at 800°C was approx. 1.7 times as high as non-charged joints. It follows that the solid-state bondability of titanium and zirconium at low temperatures was improved compared to the conventional diffusion bonding (direct bonding without hydrogen-charging).


2011 ◽  
Vol 117-119 ◽  
pp. 380-384
Author(s):  
Shu Ying Liu ◽  
Guang Bao Liu ◽  
Zhong Hao Heng ◽  
Kuan Xu

Using analysis methods of stretching test,SEM,EDS and microhardness test to investigate and research the mechanical properties, the fracture mechanism,the reacting phases are produced and the distribution range of vacuum diffusion bonding joints of Ti-6Al-4V/Cu/304. The results show that when bonding pressure is 5.0 MPa, the tensile strenght of the joint increases at first, but decreases with the increasing of bonding temperature and time, When bonding temperature is 1223K, bonding time is 3.6ks, there is a maximum tensile strength that is 163 Mpa. However, it will be disadvantageous to the performance of the joints, when bonding temperature and time extended overly. Using Copper foil as the interlayer, the intermetallic compounds did not generate in interface of Cu/304,Therefore, it formed multi-phase transition organizations by solid solution, intermetallic compounds in interface of Titanium alloy/Cu,such as TixCuy, TixFey and so on. The effect of TixCuy on strength of the joints is slightly larger than TixFey compound. The fracture mainly happened in the titanium alloy side Ti2Cu intermetallic compound in region Ⅱfor the source dehiscence, developping inⅡ-Ⅲ area junction weak intermetallic compounds of diffusion layer. It is brittle fracture. Therefore, it is the main way to improve the joint strength by improving the interface structure of titanium alloy/Cu side.


Sign in / Sign up

Export Citation Format

Share Document