Crystal Structure and Magnetic Properties of Novel Compound PrFe8Ga3C

2009 ◽  
Vol 152-153 ◽  
pp. 75-78 ◽  
Author(s):  
V.S. Gaviko ◽  
A.G. Popov ◽  
G.V. Ivanova ◽  
N.V. Mushnikov ◽  
Y.V. Belozerov ◽  
...  

We have synthesized a novel intermetallic compound PrFe8Ga3C and studied its structure and magnetic properties. X-ray diffraction analysis revealed that the compound possesses a tetragonal BaCd11-type structure (space group I41/amd). In this structure Ga atoms occupy the same sites as Fe atoms with preferably filling the 4(b) site. Magnetization curves have been measured on the aligned powder samples. Below the Curie temperature TC = 400 K the easy magnetization direction was found to orient within the (100) plane. At 80 K the compound has a spontaneous magnetization of 97 emu/g and anisotropy constant of 4.2107 erg/cm3. At room temperature these values reduce to 78 emu/g and 4.7106 erg/cm3, respectively.

1997 ◽  
Vol 475 ◽  
Author(s):  
V. Oderno ◽  
C. Dufour ◽  
K. Dumesnil ◽  
A. Mougin ◽  
Ph. Bauer ◽  
...  

ABSTRACTTb03.Dy0.7Fe2 (known as Terfenol-D) thin films have been epitaxially grown for the first time with [110] as the growth direction. X-Ray diffraction measurements evidence that the films are strained compared to the bulk alloy. Mössbauer spectroscopy and Kerr rotation measurements show that the easy magnetization direction varies from <116> at 4.2 K to around <133> at 300 K. This variation is different from the bulk case (for which the magnetization is along <100> at 4.2 K and along <111> at room temperature). This effect can be qualitatively understood if we consider the influence of the strains induced by epitaxy on the various energy terms which govern the direction of magnetization.


2011 ◽  
Vol 295-297 ◽  
pp. 978-981
Author(s):  
Jin Jun Liu ◽  
Xiang Liu ◽  
Hong Yun Yin ◽  
Xin Cai Liu ◽  
Ping Zhan Si

The magnetostrictive Tb0.22Dy0.48Pr0.3(Fe0.9B0.1)1.93 alloy, and its 0-3 and pseudo 1-3 type epoxy-bonded composites were fabricated by curing without and with a magnetic field. The structural, magnetic and magnetoelastic properties were in investigated by means of x-ray diffraction, an alternating gradient magnetometer and a standard strain technique. The easy magnetization direction (EMD) is lying along <111> direction at room temperature. The 1-3 type composites has a larger magnetostriction than the 0-3 composite has, which can be attributed to the <111>-textured orientation and the chain structure.


2013 ◽  
Vol 12 (01) ◽  
pp. 1350006
Author(s):  
AHMED E. HANNORA ◽  
FARIED F. HANNA ◽  
LOTFY K. MAREI

Mechanical alloying (MA) method has been used to produce nanocrystallite Mn -15at.% Al alloy. X-ray diffraction (XRD) patterns for the as-milled elemental α- Mn and aluminum powder samples show a mixture of α + β- MnAl phases after 20 h of milling and changes to a dominant β- MnAl phase structure after 50 h. An average crystallite size of 40 nm was determined from Hall–Williamson method analysis after 5 h of milling. Moreover, the thermal analysis results using differential thermal analysis (DTA), suggested a possible phase transformation after 20 h of milling. Isothermal treatments are carried in the temperature range of 450°C to 1000°C. Room-temperature vibrating sample magnetometer (VSM) measurements of the hysteretic response revealed that the saturation magnetization Bs and coercivity Hc for 10 h ball milled sample are ~ 2.1 emu/g and ~ 92 Oe, respectively.


2016 ◽  
Vol 10 (3) ◽  
pp. 183-188 ◽  
Author(s):  
Mohamed Afqir ◽  
Amina Tachafine ◽  
Didier Fasquelle ◽  
Mohamed Elaatmani ◽  
Jean-Claude Carru ◽  
...  

SrBi1.8Ce0.2Nb2O9 (SBCN) and SrBi1.8Ce0.2Ta2O9 (SBCT) powders were prepared via solid-state reaction method. X-ray diffraction analysis reveals that the SBCN and SBCT powders have the single phase orthorhom-bic Aurivillius structure at room temperature. The contribution of Raman scattering and FTIR spectroscopy of these samples were relatively smooth and resemble each other. The calcined powders were uniaxially pressed and sintered at 1250?C for 8 h to obtaine dense ceramics. Dielectric constant, loss tangent and AC conductivity of the sintered Ce-doped SrBi2Nb2O9 and SrBi2Ta2O9 ceramics were measured by LCR meter. The Ce-doped SBN (SBCN) ceramics have a higher Curie temperature (TC) and dielectric constant at TC (380?C and ?? ~3510) compared to the Ce-doped SBT (SBCT) ceramics (330?C and ?? ~115) when measured at 100Hz. However, the Ce-doped SBT (SBCT) ceramics have lower conductivity and dielectric loss.


2012 ◽  
Vol 29 (1) ◽  
pp. 50
Author(s):  
D.N Ba ◽  
L.T Tai ◽  
N.T Trung ◽  
N.T Huy

The influences of the substitution of Ni with Mg on crystallographic and magnetic properties of the intermetallic alloys LaNi5-xMgx (x ≤ 0.4) were investigated. The X-ray diffraction patterns showed that all samples were of single phase, and the lattice parameters, a and c, decreased slightly upon chemical doping. LaNi5 is well known as an exchange-enhanced Pauli paramagnet. Interestingly, in LaNi5-xMgx, the ferromagnetic order existed even with a small amount of dopants; the Curie temperature reached the value of room temperature for x = 0.2, and enhanced with increasing x.


2012 ◽  
Vol 535-537 ◽  
pp. 950-953
Author(s):  
Li Na Bai ◽  
Gui Xing Zheng ◽  
Zhi Jian Duan ◽  
Jian Jun Zhang

The influences of Gd concentration on martensitic transformation and magnetic properties of NiMnIn alloys were investigated by differential scanning calorimetry (DSC) , vibrating sample magnetometry (VSM), X-ray diffraction (XRD) and etc. It is Observed through the experiment: the addition of Gd enhances martensite transition temperature;X-ray diffraction analysis of experimental alloys is revealed that to the mixture is martensite and austenite at room temperature; content of Gd is not proportional to the improvement of magnetic property.


1993 ◽  
Vol 313 ◽  
Author(s):  
D. Weiler ◽  
R.F.C. Farrow ◽  
R.F. Marks ◽  
G.R. Harp ◽  
H. Notarys ◽  
...  

ABSTRACTA quantitative determination of interface (Ks) and volume anisotropy {?ψ) constants of MBE and sputtered CO/Pt Multilayers is reported. Torque and VSM Magnetometry were used to determine the total average anisotropy and the room temperature magnetization of four different series of films with varying Co thickness and nearly constant Pt thickness. All films were characterized with X-ray diffraction and X-ray fluorescence, allowing the determination of the “Magnetic” volume with good accuracy. Both Ks and Jeff are found to be orientation dependent. We find the following results for MBE films grown on Ag buffered GaAs substrates and highly < 111 > textured films, grown on etched SiNx buffers:(111) Ks = 0.97mJ/m2, Kveff =-0.74MJ/m3 MBE(111) Ks = 0.92mJ/m2, Kveff =-l.lIMJ/m3 sputtered(110) Ks = 0.42mJ/m2, Kveff =-l.95MJ/m3 MBE(001) Ks = 0.59mJ/m2, Kveff =-5.98MJ/m3 MBEThe [110]-oriented MBE films show in addition a large (intrinsic) in-plane anisotropy constant K‖0≃-3MJ/m3 which is found to be independent of the Co thickness. [100] is the easy and [110] the hard in-plane direction.


2013 ◽  
Vol 669 ◽  
pp. 46-50
Author(s):  
Y.N. Han ◽  
X.F. Han ◽  
H.L. Liu

The crystallographic structural characteristics and magnetic properties of Ho3Fe29-xTx (T=V and Cr) compounds have been investigated by using Rietveld refinement analysis of X-ray diffraction (XRD) pattern and magnetic measurements. The calculated results indicate that among the 11 different kinds of Fe sites in these Ho-Fe compounds the preferential sites of the stabilizing elements V and Cr are quite different. The refined lattice parameters of these compounds are in good agreement with the experimental data. Spin reorientations of easy magnetization direction (EMD) are observed at around 150 K for Ho3Fe27V2 and Ho3Fe25.5Cr3.5. At the around 1.7 T critical fields (HCR) first order magnetization process (FOMP) occurs in magnetization curves at 4.2 K for the magnetically aligned samples of Ho3Fe27V2 and Ho3Fe25.5Cr3.5.


2019 ◽  
Vol 3 (2) ◽  
pp. 53-57
Author(s):  
Mohammed Abdul Malek Al Saadi

Barium hexaferrite (BHF) (BaFe12O19) and its substituted derivatives have been considered as the most potential magnetic candidates with considerable chemical stability and physiochemical characteristics. BHF with x ferrite ions substituted by titanium (Ti-doped BTHF) (BaTixFe12-xO19) (x=1 and x=3) was prepared from ferric oxide (Fe2O3), barium oxide (BaO), and titanium oxide (TiO2) of purity >98%. The materials were mixed with deionized water and then dried at 1100°C and 1200°C overnight. For the formation of BaFe12O19 phase, the mixture was annealed at a rate of 10°C/min in static air atmosphere until reaching 1200°C and then maintained for 10 h. Structural properties of these samples were measured using X-ray diffraction (XRD) and scanning electron microscopy, while magnetic properties were measured using vibrating sample magnetometer (VSM) device. Magnetic and structural characteristics are investigated after preserving Ti-doped BHF samples at room temperature and ambient conditions for 12 years. The samples are characterized using the same previous techniques to find out the possible effect of long period storage on their properties. The results showed that the storage process has little effect on these properties where the granular size increased due to increased oxidation. XRD tests also showed the absence of Ti at low ratios due to increased oxidation of ferrite. VSM results showed increased magnetic properties after storage due to increased iron oxide.


2014 ◽  
Vol 24 (3S1) ◽  
pp. 90-94 ◽  
Author(s):  
Le Tuan Tu ◽  
Luu Van Thiem ◽  
Pham Duc Thang

The magnetic properties in Co-Ni-P nanowires arrays with diameter of 200 nm were investigated. All the samples were prepared by electrodeposition method with pH of 5.5 and at room temperature. During the deposition, a magnetic field in range of 0 - 750 Oe was applied parallel to the wires axis. The crystalline structure and morphology of the samples were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM), respectively. The hysteresis loops were measured at room temperature using vibrating sample magnetometry (VSM). The mixture of hcp phases of the Co-Ni-P based nanowires has been indicated by the XRD pattern. The obtained results show that with 750 Oe magnetic field applied during deposition we can obtain maximum coercivity value (2180 Oe). The \(M_{r}/M_{s}\) ratio was rapid increased when the magnetic field changed from 0 Oe to 750 Oe.


Sign in / Sign up

Export Citation Format

Share Document