Sensitivity and Stability Analysis of Mu-Synthesis AMB Flexible Rotor

2010 ◽  
Vol 164 ◽  
pp. 313-318 ◽  
Author(s):  
Arkadiusz Mystkowski

The paper presents the sensitivity and stability margin analyses of the flexible rotor supported by active magnetic bearings (AMBs) with the robust optimal vibrations control. The modal representation of the rotor finite element model (FEM) is investigated. Then, the open-loop system of the AMBs flexible rotor is established and critical speed analysis due to variation of bearing stiffness is performed. For the open-loop setup, the non-collocation effect of displacement sensors and magnetic actuators due to control stability problem is considered. The frequency mode analysis of the collocation and non-collocation system is presented. Next, the -synthesis control of 4-DOF AMBs rotor is investigated. The design process of -controllers, which cover uncertainty design and performance shape by chosen weighting function is shortly described. Then, the sensitivity function is calculated and used to evaluate the AMBs rotor stability margin for the -control and the PID control. The performance of the -controller are verified in experimental tests.

1997 ◽  
Vol 119 (2) ◽  
pp. 243-250 ◽  
Author(s):  
C. R. Knospe ◽  
S. M. Tamer ◽  
S. J. Fedigan

Recent experimental results have demonstrated the effectiveness of adaptive open-loop control algorithms for the suppression of unbalance response on rotors supported in active magnetic hearings. Herein, tools for the analysis of stability and performance robustness of this algorithm with respect to structured uncertainty are derived. The stability and performance robustness analysis problems are shown to be readily solved using a novel application of structured singular values. An example problem is presented which demonstrate the efficacy of this approach in obtaining tight bounds on stability margin and worst case performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Shaolin Ran ◽  
Yefa Hu ◽  
Huachun Wu ◽  
Xin Cheng

The resonance vibration control of flexible rotor supported on active magnetic bearings (AMB) is a challenging issue in the industrial applications. This work addresses the application of robust control method to the resonance vibration control for AMB flexible rotor while passing through the critical speed. This model-based method shows great superiority to handling flexible mode vibration, which can guarantee robust stability and performance when encountering modal perturbation. First, the designed flexible rotor-AMB test rig is briefly introduced. Then the system modeling is described in detail including flexible rotor, power amplifier, displacement sensors and magnetic actuator and rotordynamics are analyzed. Model validation is carried out by sine sweeping test. Finally, theμ-synthesis controller is designed. The simulation and experimental results indicate that the designedμ-synthesis controller, which shows great robustness to modal perturbation, can effectively suppress the resonance vibration of flexible rotor and achieve supercritical operation.


2014 ◽  
Vol 48 (6) ◽  
pp. 112-124 ◽  
Author(s):  
Shilin Peng ◽  
Canjun Yang ◽  
Shuangshuang Fan ◽  
Shaoyong Zhang ◽  
Pinfu Wang ◽  
...  

AbstractThe development of a novel type of hybrid underwater glider that combines the advantages of buoyancy-driven gliders and propeller-driven autonomous underwater vehicles has recently received considerable interest. However, few studies have considered a hybrid glider with docking capability, which would expand the glider's applications. This study presents a hybrid glider with a rotatable thruster for realizing underwater docking. A tailored dynamic model of the hybrid glider is derived, and the motion performance is evaluated by simulations and experimental tests. A comparison between the experiments and simulations shows that results are in agreement, thus indicating the feasibility of the dynamic model and the accuracy of the hydrodynamic coefficients. In addition, the hybrid glider open-loop docking tests validate the feasibility of the mechanical docking system. Moreover, the experimental tests also validate the glider's different functions and indicate that the hybrid glider with rotatable thruster has high maneuverability even at low speeds. Thus, this type of hybrid glider can be used for underwater docking.


2021 ◽  
pp. 095605992110222
Author(s):  
Chrysl A Aranha ◽  
Markus Hudert ◽  
Gerhard Fink

Interlocking Particle Structures (IPS) are geometrically stable assemblies, usually fabricated from plate type elements that are interconnected by slotted joints. IPS are demountable and their components have the potential to be used and reused in different structures and configurations. This paper explores the applicability of birch plywood panels, which are characterized by a high surface hardness, for this type of structural system. Experimental tests were conducted to determine the mechanical properties of birch plywood plates. Moreover, IPS connections with different geometrical properties were investigated for two different load exposures: bending and rotation. The characteristics under bending exposure are influenced by the orientation of the face-veneers. For the rotational load exposure, very small strength and stiffness properties have been identified. A linear elastic finite element model is presented that shows a wide agreement with the test results. The study serves as an initial probe into the performance of IPS structures at the component level. Various aspects that are relevant for the design of IPS, such as the assembly, the accuracy and challenges regarding digital fabrication, the durability, and the structural performance are discussed.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 626
Author(s):  
Riccardo Scazzosi ◽  
Marco Giglio ◽  
Andrea Manes

In the case of protection of transportation systems, the optimization of the shield is of practical interest to reduce the weight of such components and thus increase the payload or reduce the fuel consumption. As far as metal shields are concerned, some investigations based on numerical simulations showed that a multi-layered configuration made of layers of different metals could be a promising solution to reduce the weight of the shield. However, only a few experimental studies on this subject are available. The aim of this study is therefore to discuss whether or not a monolithic shield can be substituted by a double-layered configuration manufactured from two different metals and if such a configuration can guarantee the same perforation resistance at a lower weight. In order to answer this question, the performance of a ballistic shield constituted of a layer of high-strength steel and a layer of an aluminum alloy impacted by an armor piercing projectile was investigated in experimental tests. Furthermore, an axisymmetric finite element model was developed. The effect of the strain rate hardening parameter C and the thermal softening parameter m of the Johnson–Cook constitutive model was investigated. The numerical model was used to understand the perforation process and the energy dissipation mechanism inside the target. It was found that if the high-strength steel plate is used as a front layer, the specific ballistic energy increases by 54% with respect to the monolithic high-strength steel plate. On the other hand, the specific ballistic energy decreases if the aluminum plate is used as the front layer.


Author(s):  
Enzo Giacomelli ◽  
Massimo Schiavone ◽  
Fabio Manfrone ◽  
Andrea Raggi

Poppet valves have been used for a long time for very high pressure reciprocating compressors, as for example in the case of Low Density Polyethylene. These applications are very critical because the final pressure can reach 350 MPa and the evaluation of the performance of the machines is strongly connected to the proper operation and performance of the valve itself. The arrangement of cylinders requires generally a certain compactness of valve to withstand high fatigue stresses, but at the same time pressure drop and operating life are very important. In recent years the reliability of the machines has been improving over and over and the customers’ needs are very stringent. Therefore the use of poppet valves has been extended to other cases. In general the mentioned applications are heavy duty services and the simulation of the valves require some coefficients to be used in the differential equations, able to describe the movement of plate/disk or poppet and the flow and related pressure drop through the valves. Such coefficients are often determined in an experimental way in order to have a simulation closer to the real operating conditions. For the flow coefficients it is also possible today to use theoretical programs capable of determining the needed values in a quick and economical way. Some investigations have been carried out to determine the values for certain geometries of poppet valves. The results of the theory have been compared with some experimental tests. The good agreement between the various methods indicates the most suitable procedure to be applied in order to have reliable data. The advantage is evident as the time necessary for the theoretical procedure is faster and less expensive. This is of significant importance at the time of the design and also in case of a need to provide timely technical support for the operating behavior of the valves. Particularly for LDPE, the optimization of all the parameters is strongly necessary. The fatigue stresses of cylinder heads and valve bodies have to match in fact with gas passage turbulence and pressure drop, added to the mechanical behavior of the poppet valve components.


2007 ◽  
Vol 7-8 ◽  
pp. 101-106 ◽  
Author(s):  
Juan Alfonso Beltrán-Fernández ◽  
Luis Héctor Hernández-Gómez ◽  
R.G. Rodríguez-Cañizo ◽  
G. Urriolagoitia-Calderón ◽  
G. Urriolagoitia-Sosa ◽  
...  

The main results of a static analysis with a finite element model of the cervical section between C3 – C5 of a human spine are reported. In this case, it is assumed that the element C4 is completely damaged and has to be replaced. Therefore, a bone graft was installed between the anterior side of C3 and C5. Besides, a cervical plate of 55 mm. was fixed at the same side with 4 expansive screws. The resultant stresses caused by compression loads were analyzed and the displacements between the graft and adjacent vertebrae were calculated. Three loading conditions were applied: 80 N, 637.5 N and 6374.5 N. The first one corresponds to the head weight. In the second case, it is assumed that the average patient weight is supported by those vertebrae, while in the last one; the compression load failure is applied on the vertebrae. Results show that displacements were lower than 3 mm between the graft and the adjacent vertebrae. In accordance with the concept of spine stability after Müller [1], the arrangement is a stable one. Another advantage is that no wires are used in this surgical technique. Two more issues should be noticed. There is no risk that the plate may be broken and the geometry of the bone graft allows bone regeneration. These results are on line with those observed in preliminary experimental tests with porcine vertebrae.


2021 ◽  
Author(s):  
Taoufik QORIA ◽  
Xavier Guillaud

The inner cascaded structure-based grid-forming control is a typical solution used to impose an AC voltage magnitude across the output filters of the power inverters. Yet, because of the limited inverter’s bandwidth resulting from the low-switching frequencies in transmission systems, the interaction (i.e., coupling) between control loops is highly likely making the understanding of the system behavior complex and its simplification unaffordable and may also lead to instabilities. The novelty of this paper consists in proposing a simple open-loop direct voltage control to reduce the number of the inner control regulators, and thereby guaranteeing a decoupling between the inner and outer control layers as well as increasing the system stability margin. This statement is well supported with a small-signal analysis and progressive order model reduction of the system. The overall concept is validated in a 10-bus grid case while comparing the EMT and Phasor-based simulations. The practical feasibility of the control itself is experimentally proved with different test cases.


2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


1989 ◽  
Vol 111 (3) ◽  
pp. 409-415 ◽  
Author(s):  
R. M. DeSantis

A classical PI speed drive controller modified with the parallel addition of an on-off switching element appears to offer a potential for reasonable improvement over the performance of the original version. This improvement is obtained by combining classical transfer function techniques, sliding mode systems ideas, and self-tuning. While theoretical results, extended simulations, and preliminary experimental tests are encouraging, they do suggest that in actual industrial applications performance improvement may be conditioned by the usage of better performing open loop components.


Sign in / Sign up

Export Citation Format

Share Document