Numerical Modelling of Thermally Bonded Nonwovens: Continuous and Discontinuous Approaches

2012 ◽  
Vol 188 ◽  
pp. 164-169 ◽  
Author(s):  
Emrah Demirci ◽  
Xiao Nan Hou ◽  
Memiş Acar ◽  
Behnam Pourdeyhimi ◽  
Vadim V. Silberschmidt

Nonwoven fabrics are web structures of randomly-oriented fibres, bonded by means of mechanical, thermal or chemical techniques. This paper focuses on nonwovens manufactured with polymer-based fibres and bonded thermally. During thermal bonding of such fibres, as a hot calender with an engraved pattern contacts the fibre web, bond spots are formed by melting of the polymer material. As a result of this bonding process, a pattern of bond points connected with randomly oriented polymer-based fibres form the nonwoven web. Due to their manufacturing-induced composite microstructure and random orientation of fibres, nonwovens demonstrate a complex mechanical behaviour. Two distinct modelling approaches were introduced to simulate the non-trivial mechanical response of thermally bonded nonwovens based on their planar density. The first modelling approach was developed to simulate the mechanical behaviour of high-density nonwovens, and the respective fabric was modelled with shell elements with thicknesses identical to those of the bond points and the fibre matrix having distinct anisotropic mechanical properties. Random orientation of individual fibres was introduced into the model in terms of the orientation distribution function in order to determine the material’s anisotropy. The second modelling approach was introduced to simulate low-density nonwovens, and it treated the nonwoven media as a structure composed of fibres acting as truss links between bond points.

2011 ◽  
Vol 70 ◽  
pp. 405-409 ◽  
Author(s):  
Emrah Demirci ◽  
Memiş Acar ◽  
Behnam Pourdeyhimi ◽  
Vadim V. Silberschmidt

Having a unique microstructure, nonwoven fabrics possess distinct mechanical properties, dissimilar to those of woven fabrics and composites. This paper aims to introduce a methodology for simulating a dynamic response of core/sheath-type thermally bonded bicomponent fibre nonwovens. The simulated nonwoven fabric is treated as an assembly of two regions with distinct mechanical properties. One region - the fibre matrix – is composed of non-uniformly oriented core/sheath fibres acting as link between bond points. Non-uniform orientation of individual fibres is introduced into the model in terms of the orientation distribution function in order to calculate the structure’s anisotropy. Another region – bond points – is treated in simulations as a deformable bicomponent composite material, composed of the sheath material as its matrix and the core material as reinforcing fibres with random orientations. Time-dependent anisotropic mechanical properties of these regions are assessed based on fibre characteristics and manufacturing parameters such as the planar density, core/sheath ratio, fibre diameter etc. Having distinct anisotropic mechanical properties for two regions, dynamic response of the fabric is modelled in the finite element software with shell elements with thicknesses identical to those of the bond points and fibre matrix.


2020 ◽  
pp. 002199832097679
Author(s):  
V Cucumazzo ◽  
E Demirci ◽  
B Pourdeyhimi ◽  
VV Silberschmidt

Calendered nonwovens, formed by polymeric fibres, are three-phase heterogeneous materials, comprising a fibrous matrix, bond-areas and interface regions. As a result, two main factors of anisotropy can be identified. The first one is ascribable to a random fibrous microstructure, with the second one related to orientation of a bond pattern. This paper focuses on the first type of anisotropy in thin and thick nonwovens under uniaxial tensile loading. Individual and combined effects of anisotropy and strain rate were studied by conducting uniaxial tensile tests in various loading directions (0°, 30°, 45°, 60° and 90° with regard to the main fabric’s direction) and strain rate (0.01, 0.1 and 0.5 s−1). Fabrics exhibited an initial linear elastic response, followed by nonlinear strain hardening up to necking and final softening. The studied allowed assessment of the extent the effects of loading direction (anisotropy), planar density and strain rate on the mechanical response of the calendered fabrics. The evidence supported the conclusion that anisotropy is the most crucial factor, also delineating the balance between the fabric’s load-bearing capacity and extension level along various directions. The strain rate produced a marked effect on the fibre’s response, with increased stress at higher strain rate while this effect in the fabric was small. The results demonstrated the differences of the mechanical behaviour of fabrics from that of their constituent fibres.


Author(s):  
Emrah Demirci ◽  
Memis¸ Acar ◽  
Behnam Pourdeyhimi ◽  
Vadim V. Silberschmidt

Having a unique structure, nonwoven fabrics possess distinct mechanical properties dissimilar to those of woven fabrics and composites. Anisotropic elastic-plastic mechanical properties of core/sheath type thermally bonded bicomponent fibre nonwoven textiles are computed based on manufacturing parameters and fibre properties. Initially, tensile tests are performed on nonwoven fabrics and their single fibres to assess their mechanical behaviour and obtain input parameters for the developed algorithms. Random orientation of individual fibres is introduced into the model in terms of the orientation distribution function (ODF). An algorithm, based on the Hough transform, is developed to determine the ODF and calculate the structure’s anisotropy. The nonwoven fabric is modelled as an assembly of two regions — bond points and a fibre matrix, having distinct mechanical properties. Bond points are treated as a deformable bicomponent composite material composed of the sheath material of fibres as matrix reinforced with the core material as fibres with random orientation of reinforcement. On the other hand, the fibre matrix is treated as a composite membrane structure having low stiffness in thickness direction. A second algorithm is developed to calculate anisotropic material properties of these regions based on fibre characteristics and manufacturing parameters; it can be used in numerical modelling as well as product development and optimization of nonwovens.


2007 ◽  
Vol 334-335 ◽  
pp. 289-292 ◽  
Author(s):  
F.M. Zhao ◽  
Z. Liu ◽  
F.R. Jones

Phase-stepping photoelasticity has been used to study the fragmentation of an E-glass fibre in epoxy resin and examine quantitatively the effect of a transverse matrix crack on the stress transfer at an interphase. Unsized glass fibre was coated by plasma polymerisation with a crosslinked conformal film of 90% acrylic acid and 10% 1,7-octadiene. The micro-mechanical response at the fibre-matrix interphase and in the adjacent matrix has been described in detail using contour maps of fringe order. From these, the interfacial shear stress profiles at fibre-break have been calculated.


Author(s):  
F E Donaldson ◽  
P Pankaj ◽  
A H Law ◽  
A H Simpson

The study of the mechanical behaviour of trabecular bone has extensively employed micro-level finite element (μFE) models generated from images of real bone samples. It is now recognized that the key determinants of the mechanical behaviour of bone are related to its micro-architecture. The key indices of micro-architecture, in turn, depend on factors such as age, anatomical site, sex, and degree of osteoporosis. In practice, it is difficult to acquire sufficient samples that encompass these variations. In this preliminary study, a method of generating virtual finite element (FE) samples of trabecular bone is considered. Virtual samples, calibrated to satisfy some of the key micro-architectural characteristics, are generated computationally. The apparent level elastic and post-elastic mechanical behaviour of the generated samples is examined: the elastic mechanical response of these samples is found to compare well with natural trabecular bone studies conducted by previous investigators; the post-elastic response of virtual samples shows that material non-linearities have a much greater effect in comparison with geometrical non-linearity for the bone densities considered. Similar behaviour has been reported by previous studies conducted on real trabecular bone. It is concluded that virtual modelling presents a potentially valuable tool in the study of the mechanical behaviour of trabecular bone and the role of its micro-architecture.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2560 ◽  
Author(s):  
Imen Gnaba ◽  
Peng Wang ◽  
Damien Soulat ◽  
Fatma Omrani ◽  
Manuela Ferreira ◽  
...  

To date, nonwoven fabrics made with natural fibres and thermoplastic commingled fibres have been extensively used in the composite industry for a wide variety of applications. This paper presents an innovative study about the effect of the manufacturing parameters on the mechanical behaviour of flax/PP nonwoven reinforced composites. The mechanical properties of nonwoven fabric reinforced composites are related directly to the ones of dry nonwoven reinforcements, which depend strongly on the nonwoven manufacturing parameters, such as the needle-punching and areal densities. Consequently, the influence of these manufacturing parameters will be analysed through the tensile and flexural properties. The results demonstrated that the more areal density the nonwoven fabric has, the more the mechanical behaviour can be tested for composites. By contrast, it has a complex influence on needle-punching density on the load-strain and bending behaviours at the composite scale.


IAWA Journal ◽  
2009 ◽  
Vol 30 (2) ◽  
pp. 165-178 ◽  
Author(s):  
Daniel Keunecke ◽  
Robert Evans ◽  
Peter Niemz

Yew wood holds a special position within the softwoods with regard to its exceptional elasto-mechanical behaviour. Despite a relatively high density, it is highly elastic in the longitudinal direction (the modulus of elasticity is low and the stretch to break high). In the radial-tangential plane, its elastic anisotropy is clearly less pronounced compared to other softwoods such as spruce. Knowledge of the anatomical organisation of yew wood is an indispensable precondition for the correct interpretation of this conspicuous mechanical behaviour. The aim of this study, therefore, was to interpret the difference in elasto-mechanical behaviour of yew and spruce (as a reference) through their relative microstructures as measured by SilviScan, a technology based on X-ray densitometry, X-ray diffractometry and optical microscopy. This system is able to measure a variety of structural features in a wood sample. The results reveal that the elasto-mechanical response of yew is primarily due to large microfibril angles and a more homogeneous cross-sectional tissue composition (regarding tracheid dimensions and density distribution) compared to spruce. With respect to structure-property relationships, it was concluded that yew wood combines properties of normal and compression wood and therefore takes an intermediate position between them.


2004 ◽  
Vol 855 ◽  
Author(s):  
Alicia M. Ortega ◽  
Carl P. Frick ◽  
Jeffrey Tyber ◽  
Ken Gall ◽  
Hans J. Maier

ABSTRACTThe purpose of this study is to investigate the structure and properties of polycrystalline NiTi in its cast form. Although it is commonly stated in the literature that cast NiTi has poor shape-memory behavior, this study demonstrates that with appropriate nano/micro structural design, cast NiTi possesses excellent shape-memory properties. Cast NiTi shape-memory alloys may give rise to a new palette of low-cost, complex-geometry components. Results from two different nominal compositions of cast NiTi are presented: 50.1 at.%Ni and 50.9 at.%Ni. The cast NiTi showed a spatial variance in grain size and a random grain orientation distribution throughout the cast material. However, small variances in the thermo-mechanical response of the cast material resulted. Transformation temperatures were slightly influenced by the radial location from which the material was extracted from the casting, showing a change in Differential Scanning Calorimetry peak diffuseness as well as a change in transformation sequence for the 50.9 at.%Ni material. Mildly aged 50.9 at.%Ni material was capable of full shape-memory strain recovery after being strained to 5% under compression, while the 50.1 at.%Ni demonstrated residual plastic strains of around 1.5%. The isotropic and symmetric response under tensile and compressive loading is a result of the measured random grain orientation distribution. The favorable recovery properties in the cast material are primarily attributed to the presence of nanometer scale precipitates, which inhibit dislocation motion and favor the martensitic transformation.


2013 ◽  
Vol 535-536 ◽  
pp. 137-140 ◽  
Author(s):  
Iram Raza Ahmad ◽  
Muhammad Syfiqu ◽  
Xiao Jing ◽  
Dong W. Shu

Lightweight materials have been in focus in recent times for their use in automobiles, planes and protective structures for numerous benefits ranging from reduction in fuel consumption and increased payload in vehicles to lighter and stronger protective structures. For efficient use of materials in applications where they are subjected to unusual higher sudden loads, it is necessary to understand their mechanical behaviour under such conditions.In present study, the effect of strain rate on deformation of magnesium alloy AZ31Bunder compression has been investigated. The alloy is subjected to various strain rates as 10-4s-1, 500s-1 and 2500s-1 and the microstructural analysis was performed to see the changes in the microstructure of the alloy and their effect on the mechanical response of the alloy is portrayed.


Sign in / Sign up

Export Citation Format

Share Document