An Induced Shaft Deflection for Rotating Shaft Crack Detection

2013 ◽  
Vol 199 ◽  
pp. 3-8
Author(s):  
Zbigniew Kulesza

Over the years various techniques have been developed to extract information on the dynamic state of the rotating machinery. This paper introduces a new method based on the phase data of the shaft rotation angle. Usually the phase data is omitted and only the frequency components of the vibration spectrum are taken into consideration. However, the transverse shaft crack has a specific angular location about the shaft axis. Therefore, it is supposed that by measuring the vibration response of the rotor deflected by an additional constant force applied perpendicularly to the shaft axis at different angular locations, different vibration signatures can be obtained. Such signatures can then be used to detect the crack. The method utilizes also the coupling phenomenon between the lateral/torsional vibrations of the cracked rotor, since the shaft is additionally excited by an external harmonic torque. The computer simulation study is based on the uncracked and cracked rotor models obtained by using the finite element (FE) approach. The results of the numerical analysis demonstrate the potential of the suggested method for the effective shaft crack detection.

Author(s):  
G. Meng ◽  
Eric J. Hahn

By considering time dependent terms as external excitation forces, the approximate dynamic response of a cracked horizontal rotor is analysed theoretically and numerically. The solution is good for small cracks and small vibrations in the stable operating range. For each steady state harmonic component the forward and backward whirl amplitudes, the shape and orientation of the elliptic orbit and the amplitude and phase of the response signals arc analysed, taking into account the effect of crack size, crack location, rotor speed and unbalance. It is found that the crack causes backward whirl, the amplitude of which increases with the crack. For a cracked rotor, the response orbit for each harmonic component is an ellipse, the shape and orientation of which depends on the crack size. The influence of the crack on the synchronous response of the system can be regarded as an additional unbalance whereupon, depending on the speed and the crack location, the response amplitude differs from that of the uncracked rotor. The nonsynchronous response provides evidence of crack in the sub-critical range, but is too small to be detected in the supercritical range. Possibilities for crack detection over the full speed range include the additional average (the constant) response component, the backward whirl of the response, the ellipticity of the orbit, the angle between the major axis and the vertical axis and the phase angle difference between vertical and horizontal vibration signals.


Author(s):  
Mohammad A. AL-Shudeifat ◽  
Eric A. Butcher

The modeling of a cracked rotor system with an open or breathing transverse crack is addressed here. The cracked rotor with an open crack model behaves as an asymmetric shaft. Hence, the time-varying area moments of inertia of the cracked section are employed in formulating the periodic finite element stiffness matrix for both crack models which yields a linear time-periodic system. The harmonic balance method (HB) is used in solving the finite element (FE) equations of motions for studying the dynamic behavior of the cracked rotor system. The unique behavior of the whirl orbits during the passage through the subcritical rotational speeds and the sensitivity of these orbits to the unbalance force direction can be used for early crack detection of the cracked rotor for both crack models. These whirl orbits were verified experimentally for the open crack model in the neighborhood of 1/2 of the first critical rotational speed where a good match with the theoretical whirl orbits was observed.


Author(s):  
Rajeev Ranjan

The presence of crack changes the physical characteristics of a structure which in turn alter its dynamic response characteristics. So it is important to understand dynamics of cracked structures. Crack depth and location are the main parameters influencing the vibration characteristics of the rotating shaft. In the present study, a technique based on the measurement of change of natural frequencies has been employed to detect the multiple cracks in rotating shaft. The model of shaft was generated using Finite Element Method. In Finite Element Analysis, the natural frequency of the shaft was calculated by modal analysis using the software ANSYS. The Numerical data were obtained from FEA, then used to train through Adaptive Neuro-Fuzzy-Inference System. Then simulations were carried out to test the performance and accuracy of the trained networks. The simulation results show that the proposed ANFIS estimate the locations and depth of cracks precisely.


1997 ◽  
Vol 119 (2) ◽  
pp. 447-455 ◽  
Author(s):  
G. Meng ◽  
E. J. Hahn

By considering time-dependent terms as external excitation forces, the approximate dynamic response of a cracked horizontal rotor is analyzed theoretically and numerically. The solution is good for small cracks and small vibrations in the stable operating range. For each steady-state harmonic component, the forward and backward whirl amplitudes, the shape and orientation of the elliptic orbit, and the amplitude and phase of the response signals are analyzed, taking into account the effect of crack size, crack location, rotor speed, and unbalance. It is found that the crack causes backward whirl, the amplitude of which increases with the crack. For a cracked rotor, the response orbit for each harmonic component is an ellipse, the shape and orientation of which depend on the crack size. The influence of the crack on the synchronous response of the system can be regarded as an additional unbalance whereupon, depending on the speed and the crack location, the response amplitude differs from that of the uncracked rotor. The nonsynchronous response provides evidence of crack in the subcritical range, but is too small to be detected in the supercritical range. Possibilities for crack detection over the full-speed range include the additional average (the constant) response component, the backward whirl of the response, the ellipticity of the orbit, the angle between the major axis and the vertical axis, and the phase angle difference between vertical and horizontal vibration signals.


Author(s):  
Jerzy T. Sawicki ◽  
Dmitry L. Storozhev ◽  
John D. Lekki

This paper addresses self-diagnostic properties of AMB (active magnetic bearing) supported rotors for on-line detection of the transverse crack on a rotating shaft. In addition to pure levitation, the rotor supporting bearing also serves as an actuator that transforms current signals additionally injected into the control loop into the superimposed specially selected excitation forces into the suspended rotor. These additional excitations induce combination frequencies in the rotor response, providing unique signatures for the presence of crack. The background of theoretical modeling, experimental and computer simulation results for the AMB supported cracked rotor with self-diagnostic excitation forces are presented and discussed.


2019 ◽  
Vol 24 (3) ◽  
pp. 418-425
Author(s):  
Cristina Cristina Castejon ◽  
Marıa Jesus Gomez ◽  
Juan Carlos Garcia-Prada ◽  
Eduardo Corral

Maintenance is critical to avoid catastrophic failures in rotating machinery, and the detection of cracks plays a critical role because they can originate failures with costly processes of reparation, especially in shafts. Vibration signals are widely used in machine monitoring and fault diagnostics. The most critical issue in machine monitoring is the suitable selection of the vibration parameters that represent the condition of the machine. Discrete Wavelet Transform, and one of its recursive forms, called Wavelet Packet Transform, provide a high potential for pattern extraction. Several factors must be selected and taken into account in the Wavelet Transform application such as the level of decomposition, the suitable mother wavelet, and the level basis or features. In this work, the dynamic response of a shaft with different levels of crack is studied. The evolution of energy of the vibration signals obtained from the rotating shaft and the frequencies where maximum increments of energy appear with the crack are analyzed. The results allow the conclusion that changes in energies computed by means of the Wavelet Packet Transform can be successfully used for crack detection.


1998 ◽  
Vol 120 (2) ◽  
pp. 551-556 ◽  
Author(s):  
Ming-Chuan Wu ◽  
Shyh-Chin Huang

Dynamic response and stability of a rotating shaft-disk containing a transverse crack is investigated. FFT analysis of response amplitudes showed that the 2Ω component (Ω: rotation speed) was excited by crack breathing and could serve as a good index for crack identification. Intensive numerical studies of crack location, crack depth, rotation speed, and sensing position on response amplitudes displayed a feasible technique for the identification of crack depth and crack location. It is achieved by intersecting the two equi-amplitude response curves of two separated sensing probes. Finally, the instability of the system caused by a crack is examined via Floquet theory and the multiple scale method. The stability diagrams, illustrated as functions of crack depth, rotation speed, and damping, are shown and discussed.


Author(s):  
Kelsen LaBerge ◽  
Maurice Adams

A new method currently under development for rotating shaft crack detection is presented. The underlying approach is to utilize the impact inherent in the once-per-revolution closing of a shaft crack. The axially traveling elastic compression wave, which is initiated by this impact, propagates to both ends of the shaft at the governing acoustic velocity. Provided suitable measurement near the shaft ends can detect the wave’s arrival, then extracting both the crack location and size is thereby feasible. Proof-of-concept for this new method for shaft crack detection utilizes one-dimensional wave propagation simulations and a newly designed test apparatus, which are presented.


Fuzzy Systems ◽  
2017 ◽  
pp. 1540-1551
Author(s):  
Rajeev Ranjan

The presence of crack changes the physical characteristics of a structure which in turn alter its dynamic response characteristics. So it is important to understand dynamics of cracked structures. Crack depth and location are the main parameters influencing the vibration characteristics of the rotating shaft. In the present study, a technique based on the measurement of change of natural frequencies has been employed to detect the multiple cracks in rotating shaft. The model of shaft was generated using Finite Element Method. In Finite Element Analysis, the natural frequency of the shaft was calculated by modal analysis using the software ANSYS. The Numerical data were obtained from FEA, then used to train through Adaptive Neuro-Fuzzy-Inference System. Then simulations were carried out to test the performance and accuracy of the trained networks. The simulation results show that the proposed ANFIS estimate the locations and depth of cracks precisely.


Sign in / Sign up

Export Citation Format

Share Document