Luminescence from Germanium and Germanium on Silicon

2013 ◽  
Vol 205-206 ◽  
pp. 383-393 ◽  
Author(s):  
Tzanimir Arguirov ◽  
Martin Kittler ◽  
Michael Oehme ◽  
Nikolay V. Abrosimov ◽  
Oleg F. Vyvenko ◽  
...  

We present an overview on generation of direct gap photo- and electroluminescence in Ge bulk wafers, Ge thin films deposited on Si, and Ge p-i-n diodes prepared on Si substrates. We analyzed the emission in a spectral range from 0.45 eV to 0.95 eV, covering the radiation caused by direct gap transitions, the indirect one, and also the luminescence related to transition on dislocations. The temperature and excitation level strongly influence the intensities of direct and indirect photoluminescence in bulk samples. As it could be expected, high temperature and excitation favour the generation of direct gap luminescence. Intrinsic bulk Ge shows a quadratic dependence of the direct gap luminescence on the excitation and a sub-quadratic one for the indirect. The photoluminescence spectra taken from intrinsic Ge on Si layers show features related to dislocations. There are two spectral regions associated with dislocation recombination. At room temperature one is at around 0.45 eV and the other at 0.72 eV. We found strong direct gap radiation from the Ge p-i-n diodes with intrinsic, highly dislocated active area (dislocation density of about 108-1010 cm-2). There is a threshold current density of 8 kA/cm2, at which the direct band luminescence becomes a super-quadratic. The dependence of the radiation intensity on the excitation is governed by a power law with exponent of 1.7 before reaching that threshold and 4.5 after exceeding it. Above the threshold the dislocation radiation shows similar dependence on the excitation as the direct band luminescence.

1991 ◽  
Vol 228 ◽  
Author(s):  
T. Egawa ◽  
Y. Hayashi ◽  
T. George ◽  
T. Soga ◽  
T. Jimbo ◽  
...  

ABSTRACTThe heterointerfaces of single quantum wells (SQWs) and the characteristics of SQW lasers on Si substrates grown with Al0.5 Ga0 5As/Al0.55Ga0.45P intermediate layers (AlGaAs/AlGaP ILs) entirely by MOCVD are reported. The surface morphology and the heterointerfaces of SQWs grown on Si substrates with the AlGaAs/AlGaP ILs are smoother than those of the two-step-grown sample. The two-dimensional growth of the AlGaAs/AlGaP ILs on a Si substrate contributes to obtain the smooth heterointerface. The excellent lasing characteristics are obtained by the AlGaAs/AlGaP ILs, which are caused by the smooth heterointerfaces. The lasers grown with the AlGaAs/AlGaP ILs show the averaged threshold current density of 1.83 kA/cm2 and the averaged differential quantum efficiency of 51.9 % under cw condition at room temperature.


2017 ◽  
Vol 11 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Martina Gilic ◽  
Milica Petrovic ◽  
Jovana Cirkovic ◽  
Novica Paunovic ◽  
Svetlana Savic-Sevic ◽  
...  

Thin films of CuSe2 nanoparticles embedded in selenium matrix were prepared by vacuum evaporation method on a glass substrate at room temperature. The optical properties of the films were investigated by photoluminescence spectroscopy (T=20-300K) and UV-VIS spectroscopy (T = 300K). Surface morphology was investigated by scanning electron microscopy. The band gap for direct transition in CuSe2 was found to be in the range of 2.72-2.75 eV and that for indirect transition is in the range of 1.71-1.75 eV determined by UV-VIS spectroscopy. On the other hand, selenium exhibits direct band gap in the range of 2.33-2.36 eV. All estimated band gaps slightly decrease with the increase of the film thickness. Photoluminescence spectra of the thin films clearly show emission bands at about 1.63 and 2.32 eV at room temperature, with no shift observed with decreasing temperature. A model was proposed for explaining such anomaly.


Author(s):  
R. M. Anderson ◽  
T. M. Reith ◽  
M. J. Sullivan ◽  
E. K. Brandis

Thin films of aluminum or aluminum-silicon can be used in conjunction with thin films of chromium in integrated electronic circuits. For some applications, these films exhibit undesirable reactions; in particular, intermetallic formation below 500 C must be inhibited or prevented. The Al films, being the principal current carriers in interconnective metal applications, are usually much thicker than the Cr; so one might expect Al-rich intermetallics to form when the processing temperature goes out of control. Unfortunately, the JCPDS and the literature do not contain enough data on the Al-rich phases CrAl7 and Cr2Al11, and the determination of these data was a secondary aim of this work.To define a matrix of Cr-Al diffusion couples, Cr-Al films were deposited with two sets of variables: Al or Al-Si, and broken vacuum or single pumpdown. All films were deposited on 2-1/4-inch thermally oxidized Si substrates. A 500-Å layer of Cr was deposited at 120 Å/min on substrates at room temperature, in a vacuum system that had been pumped to 2 x 10-6 Torr. Then, with or without vacuum break, a 1000-Å layer of Al or Al-Si was deposited at 35 Å/s, with the substrates still at room temperature.


Author(s):  
J. L. Batstone ◽  
D.A. Smith

Recrystallization of amorphous NiSi2 involves nucleation and growth processes which can be studied dynamically in the electron microscope. Previous studies have shown thatCoSi2 recrystallises by nucleating spherical caps which then grow with a constant radial velocity. Coalescence results in the formation of hyperbolic grain boundaries. Nucleation of the isostructural NiSi2 results in small, approximately round grains with very rough amorphous/crystal interfaces. In this paper we show that the morphology of the rccrystallizcd film is dramatically affected by variations in the stoichiometry of the amorphous film.Thin films of NiSi2 were prepared by c-bcam deposition of Ni and Si onto Si3N4, windows supported by Si substrates at room temperature. The base pressure prior to deposition was 6 × 107 torr. In order to investigate the effect of stoichiomctry on the recrystallization process, the Ni/Si ratio was varied in the range NiSi1.8-2.4. The composition of the amorphous films was determined by Rutherford Backscattering.


2001 ◽  
Vol 707 ◽  
Author(s):  
Vadim Tokranov ◽  
M. Yakimov ◽  
A. Katsnelson ◽  
K. Dovidenko ◽  
R. Todt ◽  
...  

ABSTRACTThe influence of two monolayer - thick AlAs under- and overlayers on the formation and properties of self-assembled InAs quantum dots (QDs) has been studied using transmission electron microscopy (TEM) and photoluminescence (PL). Single sheets of InAs QDs were grown inside a 2ML/8ML AlAs/GaAs short-period superlattice with various combinations of under- and overlayers. It was found that 2.4ML InAs QDs with GaAs underlayer and 2ML AlAs overlayer exhibited the lowest QD surface density of 4.2x1010 cm-2 and the largest QD lateral size of about 19 nm as compared to the other combinations of cladding layers. This InAs QD ensemble has also shown the highest room temperature PL intensity with a peak at 1210 nm and the narrowest linewidth, 34 meV. Fabricated edge-emitting lasers using triple layers of InAs QDs with AlAs overlayer demonstrated 120 A/cm2 threshold current density and 1230 nm emission wavelength at room temperature. Excited state QD lasers have shown high thermal stability of threshold current up to 130°C.


2007 ◽  
Vol 561-565 ◽  
pp. 1161-1164
Author(s):  
Xiao Na Li ◽  
Bing Hu ◽  
Chuang Dong ◽  
Xin Jiang

Fe/Si multi-layer films were fabricated on Si (100) substrates utilizing radio frequency magnetron sputtering system. Si/β-FeSi2 structure was found in the films after the deposition. Structural characterization of Fe-silicide sample was performed by transmission electron microscopy, to explore the dependence of the microstructure of β-FeSi2 film on the preparation parameters. It was found that β-FeSi2 particles were formed after the deposition without annealing, whose size is less than 20nm ,with a direct band-gap of 0.94eV in room temperature. After annealing at 850°C, particles grow lager, however the stability of thin films was still good.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jyun-Min Lin ◽  
Ying-Chung Chen ◽  
Chi-Pi Lin

Bismuth telluride-based compounds are known to be the best thermoelectric materials within room temperature region, which exhibit potential applications in cooler or power generation. In this paper, thermal evaporation processes were adopted to fabricate the n-type Bi2Te3thin films on SiO2/Si substrates. The influence of thermal annealing on the microstructures and thermoelectric properties of Bi2Te3thin films was investigated in temperature range 100–250°C. The crystalline structures and morphologies were characterized by X-ray diffraction and field emission scanning electron microscope analyses. The Seebeck coefficients, electrical conductivity, and power factor were measured at room temperature. The experimental results showed that both the Seebeck coefficient and power factor were enhanced as the annealing temperature increased. When the annealing temperature increased to 250°C for 30 min, the Seebeck coefficient and power factor of n-type Bi2Te3-based thin films were found to be about −132.02 μV/K and 6.05 μW/cm·K2, respectively.


2017 ◽  
Vol 128 ◽  
pp. 451-464 ◽  
Author(s):  
M.C. Ramírez-Camacho ◽  
C.F. Sánchez-Valdés ◽  
J.J. Gervacio-Arciniega ◽  
R. Font ◽  
C. Ostos ◽  
...  

2017 ◽  
Vol 49 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Milica Petrovic ◽  
Martina Gilic ◽  
Jovana Cirkovic ◽  
Maja Romcevic ◽  
Nebojsa Romcevic ◽  
...  

Copper selenide thin films of three different thicknesses have been prepared by vacuum evaporation method on a glass substrate at room temperature. The optical properties of the films were investigated by UV-VIS-NIR spectroscopy and photoluminescence spectroscopy. Surface morphology was investigated by field-emission scanning electron microscopy. Copper selenide exhibits both direct and indirect transitions. The band gap for direct transition is found to be ~2.7 eV and that for indirect transition it is ~1.70 eV. Photoluminescence spectra of copper selenide thin films have also been analyzed, which show emission peaks at 530, 550, and 760 nm. The latter corresponds to indirect transition in investigated material.


Sign in / Sign up

Export Citation Format

Share Document