Peridynamical Modelling of Nanoindentation in Ceramic Composites

2016 ◽  
Vol 254 ◽  
pp. 55-59 ◽  
Author(s):  
Tomasz Sadowski ◽  
Błażej Pankowski

Indentation in brittle solids involves many complex phenomena related to cleavage and contact, as well as intrinsic stress singularities, which are almost impossible to capture with traditional continuum approach and FEA at mesoscale. In case of a two-phase ceramic composite [1–3] the number of unknown material and interfacial constants, that have to be calibrated experimentally, increases rapidly [4, 5]. In this paper, nanoindentation in zirconia-toughened alumina (ZTA) is modelled using discrete (peridynamical) approach

2006 ◽  
Vol 530-531 ◽  
pp. 421-424
Author(s):  
Haine Beck ◽  
Maria do Carmo de Andrade Nono ◽  
Francisco Piorino Neto

Zirconia-toughened alumina (ZTA) ceramics with Ce-TZP (tetragonal zirconia polycrystalline doped with ceria) volume fraction on 33% were prepared with the addition.. The influence of glass infiltrated method was investigated. Coprecipitated Zr and Ce hydroxide mixture was obtained from ZrOCl2.8H2O and CeCl3. 7H2O aqueous solution. CeO2-ZrO2 calcinated powder was compacted and the compacted samples were sintered at 1180°C. Powder samples were characterized by scanning electronic microscopy (SEM), The volume fraction of each phase, the grains size and shapes, and the porosity were investigated with SEM. The relative density and shrinkage was investigate too. The results showed that the crystalline matrix was composed by SiO2 -B2O3-La2O3-Al2O3-Ce-TZP and revealed the important role played the glassy phase in the densification of this ceramic composite.


2020 ◽  
Vol 143 (6) ◽  
Author(s):  
Kunal Ghosh ◽  
Subhrojyoti Mazumder ◽  
Harish Hirani ◽  
Poulomi Roy ◽  
Nilrudra Mandal

Abstract An innovative approach was adopted for fabricating zirconia toughened alumina (ZTA)-MoS2 self-lubricating ceramic composites with the inclusion of hydrothermally synthesized nano MoS2 through the micropores of perforated ZTA ceramics. This method avoided the exposure of MoS2 in high-temperature environment due to its in-sensitiveness during traditional sintering techniques. Different weight percentages (wt%: 0, 5, 10, and 15) of graphite were incorporated to produce porous ZTA ceramics with the help of cold press sintering followed by insertion of nano MoS2 into the matrices. Best tribological characteristics were obtained with 10 wt% graphite-ZTA-MoS2 specimen which offered an improvement of ∼66% in coefficient of friction (COF) and ∼96% in specific wear rate when dry sliding tests were carried out against silicon nitride (Si3N4) in high vacuum (5.0 × 10−4 mbar). Nano MoS2 was sheared off at the contacting interface during sliding under load which showed a good tribological characteristics of the composite. Delamination was found as the dominating wear mechanism in ZTA-MoS2 composites during wear tests.


2010 ◽  
Vol 638-642 ◽  
pp. 2743-2748
Author(s):  
Tomasz Sadowski ◽  
Liviu Marsavina

Two-phase ceramic composite materials, (CMC, e.g. Al2O3/ZrO2), have a non-linear and complex overall response to applied loads due to: different phases, existence of an inital porosity, development of limited plasticity and internal microdefects. All microdefects act as stress concentrators and locally change the state of stress, leading to the development of mesocracks and finally macrocracks. Experimental results show that defects develop mainly inter-granular and cause inhomogeneity and induced anisotropy of the solid. Modelling of such material response is possible by multiscale approach describing different phenomena occuring at different scales: micro- meso- and macro- ones. The paper presents uniaxial tension process of the Al2O3/ZrO2 composite with the gradual degradation of the material properties due to different defects development.


2016 ◽  
Vol 840 ◽  
pp. 82-86
Author(s):  
Hanisah Manshor ◽  
Wan Muhammad Ihsan Wan Sabri ◽  
Abdul Wahid Ramli ◽  
Ahmad Zahirani Ahmad Azhar ◽  
Ezzat Chan Abdullah ◽  
...  

ZTA based ceramic composite system is widely accepted as cutting tools for many of these harder and wear resistant workpiece materials. This is due to their beneficial mechanical properties i.e. high temperature strength, high hardness and ability to maintain its cutting edge shape at higher temperatures. Although a lot of works have focused on the effect of various sintering additives on the ZTA ceramic system, the effect of Magnesia (MgO) and Titania (TiO2) on ZTA has not yet been studied. In this work, the physical properties of Zirconia Toughened Alumina (ZTA) ceramic composite with MgO and TiO2 as additives was investigated. The composition of TiO2 varied from 0 wt% to 3.5 wt% whereby other materials such as Al2O3, Yttria Stabilized Zirconia (YSZ) and MgO were kept at constant weight percentage. Sintered samples were then tested and analyzed by XRD, Vickers hardness and high precision densimeter to investigate phase content, hardness value and densification respectively. Results showed that the solubility limit of TiO2 in ZTA-MgO ceramic composites is at 2.0 wt%. Further addition of TiO2 resulted in the formation of secondary phase known as Zirconium titanium oxide (Zr0.35TiO0.65O2) which deteriorate the properties exhibited by ZTA-MgO-TiO2 ceramic composites.


2021 ◽  
Vol 5 (8) ◽  
pp. 206
Author(s):  
Piconi Corrado ◽  
Sprio Simone

Ceramic composites based on alumina and zirconia have found a wide field of application in the present century in orthopedic joint replacements, and their use in dentistry is spreading. The development of this class of bioceramic composites was started in the 1980s, but the first clinical applications of the total hip replacement joint were introduced in the market only in the early 2000s. Since then, several composite systems were introduced in joint replacements. These materials are classified as Zirconia-Toughened Alumina if alumina is the main component or as Alumina-Toughened Zirconia when zirconia is the main component. In addition, some of them may contain a third phase based on strontium exa-aluminate. The flexibility in device design due to the excellent mechanical behavior of this class of bioceramics results in a number of innovative devices for joint replacements in the hip, the knee, and the shoulder, as well in dental implants. This paper gives an overview of the different materials available and on orthopedic and dental devices made out of oxide bioceramic composites today on the market or under development.


2019 ◽  
Vol 9 (22) ◽  
pp. 4945 ◽  
Author(s):  
Daiqi Li ◽  
Bin Tang ◽  
Xi Lu ◽  
Quanxiang Li ◽  
Wu Chen ◽  
...  

In this study, a single firing was used to convert stabilized polyacrylonitrile (PAN) fibers and ceramic forming materials (kaolin, feldspar, and quartz) into carbon fiber/ceramic composites. For the first time, PAN carbonization and ceramic sintering were achieved simultaneously in one thermal cycle and the microscopic morphologies and physical features of the obtained carbon fiber/ceramic composites were characterized in detail. The obtained carbon fiber/ceramic composite showed comparable flexural strength as commercial ceramic tiles. Meanwhile, the composite showed exceptional electro-thermal performance based on the electro-thermal performance of the carbonized PAN fibers, which could reach 108 ℃ after 15 s, 204 ℃ after 90 s, and 292 ℃ after 450 s at 5 V (2.6 A), thereby making the ceramic composite a good candidate as an indoor climate control heater, defogger device, kettle, and other heating element.


Author(s):  
Monica Sanda Iliescu ◽  
Gabriel Dan Ciocan ◽  
Franc¸ois Avellan

Part load operation of hydro turbines with fixed pitch blades causes complex instable cavitation flow in the diffuser cone. Application of PIV systems provides the opportunity to investigate the flow velocity and turbulent fields in the case of development of cavitation vortex, the so-called turbine rope, at the outlet of a Francis turbine runner. The synchronization of the PIV flow survey with the rope precession allows to apply phase averaging techniques in order to extract both the periodic velocity components and the rope layout. The influence of the turbine setting level on the volume of the cavity rope and its center is investigated, providing a physical insight on the hydrodynamic complex phenomena involved in the development of the cavitation rope at Francis turbine operating regimes.


2012 ◽  
Vol 727-728 ◽  
pp. 1387-1392 ◽  
Author(s):  
Luan M. Medeiros ◽  
Fernando S. Silva ◽  
Juliana Marchi ◽  
Walter Kenji Yoshito ◽  
Dolores Ribeiro Ricci Lazar ◽  
...  

Zirconium dioxide (zirconia) ceramics are known by its high strength and toughness and titanium dioxide (titania) ceramics has outstanding surface properties. The ceramic composite formed between the two oxides are expected to have advantages of both ceramics, especially when its surface area is increased by pores. In this work, ceramic composites of ZrO2-Y2O3-TiO2were synthesized by coprecipitation and rice starch was added as pore former in 10, 20 and 30 wt%. Powders were cold pressed as cylindrical pellets and sintered at 1500 °C for 01 hour and ceramics were characterized by techniques as Archimedes method for density measurements, X-ray diffraction and scanning electron microscopy. Results showed that pores are inhomogeneously distributed through ceramic bodies.


2010 ◽  
Vol 132 (7) ◽  
Author(s):  
Tanmay Basak ◽  
Sankaran Durairaj

A detailed theoretical analysis has been carried out to study efficient microwave assisted heating of thermoplastic (Nylon 66) slabs via polymer-ceramic-polymer composite attached with ceramic plate at one side. The ceramic layer or plate is chosen as Al2O3 or SiC. The detailed spatial distributions of power and temperature are obtained via finite element simulation. It is found that uniform heating with enhanced processing rate may occur with specific thickness of Al2O3 composite, whereas SiC composite leads to enhanced processing rate with higher thermal runaway for thick Nylon samples attached with Al2O3 plate. SiC composite is effective due to enhanced processing rate, whereas Al2O3 is not effective due to reduced processing rate for thin samples attached with Al2O3 plate. For samples attached with SiC plate, thermal runaway is reduced by SiC composite, whereas that is not reduced by Alumina composite. Current study recommends efficient heating methodologies for thermoplastic substances with ceramic composite to achieve a higher processing rate with uniform temperature distribution.


2009 ◽  
Vol 8 (1) ◽  
pp. 24 ◽  
Author(s):  
I. C. Acunha Jr ◽  
P. S. Schneider

Evaporative condensers present a hard problem for numerical modeling because of the complex phenomena of heat and mass transfer outside of the bundle tubes in turbulent flows. The goal of this work is to study the air and water behavior inside an evaporative condenser operating with ammonia as the refrigerant fluid. A commercial CFD software package (FLUENT) is employed to predict the two-phase flow of air and water droplets in this equipment. The air flow is modeled as a continuous phase using the Eulerian approach while the droplets water flow is modeled as a disperse phase with Lagrangian approach. The coupling between pressure and velocity fields is performed by the SIMPLE algorithm. The pressure, velocity and temperature fields are used to perform qualitative analyses to identify functional aspects of the condenser, while the temperature and the relative humidity evolution contributed to verify the agreement between the results obtained with the numerical model and those presented by equipment manufacturer.


Sign in / Sign up

Export Citation Format

Share Document