Influence of Mechanical Stress at High Temperatures on the Properties of Steels Intended for the Manufacture of Fuel Cladding for Generation IV Reactors

2017 ◽  
Vol 270 ◽  
pp. 246-252
Author(s):  
Zbyněk Špirit ◽  
Michal Chocholoušek ◽  
Marek Šíma

This paper describes the testing of thin-walled tubes made of oxide dispersion-hardened steels based on yttrium oxides. Series of mechanical and metallographic tests were carried out on the steels to evaluate the basic material properties. These steels are the candidate materials for the manufacture of the fuel cladding for generation IV nuclear reactors. Mechanical tests were performed on miniature specimens of Fe-9Cr and Fe-14Cr steels at 20 °C, 500 °C, and 625 °C under vacuum. Metallographic, fractographic and EBSD analyses were used to describe microstructure and fracture mechanism of the tested materials.

2016 ◽  
Vol 699 ◽  
pp. 37-42 ◽  
Author(s):  
Martin Ovsik ◽  
David Manas ◽  
Miroslav Manas ◽  
Michal Stanek ◽  
Martin Reznicek

Radiation crosslinking of polyamidu 6 (PA 6) is a well-recognized modification of improving basic material characteristics. Radiation, which penetrated through specimens and reacted with the cross-linking agent, gradually formed cross-linking (3D net), first in the surface layer and then in the total volume, which resulted in considerable changes in specimen behaviour. This research paper deals with the possible utilization of irradiated PA6. The material already contained a special cross-linking agent TAIC (5 volume %), which should enable subsequent cross-linking by ionizing β – radiation (15, 30 and 45 kGy). The effect of the irradiation on mechanical behavior of the tested PA 6 was investigated. Material properties created by β – radiation are measured by nanoindentation test using the DSI method (Depth Sensing Indentation). Hardness increased with increasing dose of irradiation at everything samples; however results of nanoindentation test shows increasing in nanomechanical properties of surface layer. The highest values of nanomechanical properties were reached radiation dose of 45 kGy, when the nanomechanical values increased by about 95%. These results indicate advantage cross-linking of the improved mechanical properties.


Author(s):  
Petr Dzik ◽  
Magdalena Morozová ◽  
Petr Klusoň ◽  
Michal Veselý

AbstractAn optimized reverse micelles sol-gel composition was deposited by inkjet direct patterning onto glass supports. Experimental “material printer” Fujifilm Dimatix 2831 was used for sol patterning. Printing was repeated up to 4 times in wet-to-dry manner and photocatalytic coatings of various thickness were obtained after final thermal calcination. Basic material properties of prepared coating were studied by optical microscopy, electron and atomic force imaging, Raman, XRD and UV-VIS spectrometry. Photocatalytic activity was evaluated by dye and fatty acid degradation rate as well as photoinduced hydrophilic conversion rate. Reverse micelles proved to be viable synthetic route for the preparation of titania coatings with even structure and their compatibility with inkjet direct patterning deposition was demonstrated.


Author(s):  
Jiaqiang Li ◽  
Yao Chen ◽  
Xiaodong Feng ◽  
Jian Feng ◽  
Pooya Sareh

Origami structures have been widely used in various engineering fields due to their desirable properties such as geometric transformability and high specific energy absorption. Based on the Kresling origami pattern, this study proposes a type of thin-walled origami tube the structural configuration of which is found by a mixed-integer linear programming model. Using finite element analysis, a reasonable configuration of a thin-walled tube with the Kresling pattern is firstly analyzed. Then, the influences of different material properties, the rotation angle of the upper and lower sections of the tube unit, and cross-sectional shapes on the energy absorption behavior of the thin-walled tubes under axial compression are evaluated. The results show that the symmetric thin-walled tube with the Kresling pattern is a reasonable choice for energy absorption purposes. Compared with thin-walled prismatic tubes, the thin-walled tube with the Kresling pattern substantially reduces the initial peak force and the average crushing force, without significantly reducing its energy absorption capacity; moreover, it enters the plastic energy dissipation stage ahead of time, giving it a superior energy absorption performance. Besides, the material properties, rotation angle, and cross-sectional shape have considerable influences on its energy absorption performance. The results provide a basis for the application of the Kresling origami pattern in the design of thin-walled energy-absorbingstructures.


Author(s):  
Ashraf Ragab Mohamed

Corrosion of reinforcement is considered as the major cause of most deteriorated concrete structures. As reinforcement corrodes, the load carrying capacity is affected and hence, the probability of failure increases. At the time of inspection of deteriorated structures, engineers are faced with the problem whether the available steel is enough to secure the safety of the structural member. This chapter addresses this problem based on reliability-based approach to evaluate the safety of the deteriorated members due to uniform corrosion under bending. A methodology is proposed to facilitate the determination of the member reliability index based on basic material properties and current loading. A step-by-step procedure is proposed based on charts developed in this study according to the Egyptian code provisions.


2016 ◽  
Vol 821 ◽  
pp. 464-470
Author(s):  
Ľubomír Gajdoš ◽  
Martin Šperl

For standard fracture mechanical tests flat specimens (principally CT or SENB) are required. When investigating fracture mechanical properties of thin – walled pipes this brings about a problem because it is necessary to straighten pipe bands. However, this operation causes internal stresses to be induced not only in the semi-product subjected to straightening but also in finished specimens. A question therefore arises to what extent are then the magnitudes of the fracture toughness determined representative for the actual cylindrical wall. To solve this problem fracture mechanics tests were caried out on flat (straightened) CT specimens as well as on curved CT specimens with the natural curvature. The R – curves as well as the resulting parameters of the fracture toughness, obtained for both types of CT specimens, were compared and it was concluded that the fracture toughness of the pipe material determined on straightened CT specimens was practically the same as that obtained on curved CT specimens.


2006 ◽  
Vol 326-328 ◽  
pp. 1841-1844 ◽  
Author(s):  
Guo Yang Guan ◽  
Gui Qiong Jiao ◽  
Tao Huang

Mechanical tests have been conducted to understand compressive behavior of a plain weave C/SiC composite, especially to investigate the failure mechanism. The stress-strain curves of this composite show linear feature in compression. The specimens fail along a flat plane 13°~15° to the weave plane, running across four typical regions in the bulk: weft bundle, warp/weft interface, warp bundle, and inter-ply. According to the observed fracture route, four basic failure modes are schematically presented. Cracks form and develop in these areas along fiber/matrix interphase or within matrix, depending on the strength competition between interphase and matrix. The fracture mechanism reveals dependence of compress strength on matrix abundance between and within bundles. Based on the failure modes new method for compress strength prediction can be further investigated.


2014 ◽  
Vol 1000 ◽  
pp. 126-129 ◽  
Author(s):  
Tomáš Melichar ◽  
Jiří Bydžovský

The paper discusses the impact of several selected aggregates on the basic material characteristics of cement composites. Both artificial and natural aggregates (four types in total) with different mineralogical composition were evaluated. The specimens were exposed to environments with the temperature up to 1000°C and then subjected to physico-mechanical tests. For the follow-up development of polymer-cement mortars, we selected two types of aggregates – fly ash aggloporite (FAA) and amphibolite (AMA).


Modelling ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 78-93
Author(s):  
Bora Pulatsu ◽  
Semih Gonen ◽  
Ece Erdogmus ◽  
Paulo B. Lourenço ◽  
Jose V. Lemos ◽  
...  

Nonhomogeneous material characteristics of masonry lead to complex fracture mechanisms, which require substantial analysis regarding the influence of masonry constituents. In this context, this study presents a discontinuum modeling strategy, based on the discrete element method, developed to investigate the tensile fracture mechanism of masonry wallettes parallel to the bed joints considering the inherent variation in the material properties. The applied numerical approach utilizes polyhedral blocks to represent masonry and integrate the equations of motion explicitly to compute nodal velocities for each block in the system. The mechanical interaction between the adjacent blocks is computed at the active contact points, where the contact stresses are calculated and updated based on the implemented contact constitutive models. In this research, different fracture mechanisms of masonry wallettes under tension are explored developing at the unit–mortar interface and/or within the units. The contact properties are determined based on certain statistical variations. Emphasis is given to the influence of the material properties on the fracture mechanism and capacity of the masonry assemblages. The results of the analysis reveal and quantify the importance of the contact properties for unit and unit–mortar interfaces (e.g., tensile strength, cohesion, and friction coefficient) in terms of capacity and corresponding fracture mechanism for masonry wallettes.


Sign in / Sign up

Export Citation Format

Share Document