Properties of Nanostructured Rutile Titanium Dioxide (TiO2) Thin Film Deposited with Silver Sulfide (Ag2S) Quantum Dots as Photoanode for Solar Photovoltaic

2019 ◽  
Vol 290 ◽  
pp. 329-335 ◽  
Author(s):  
Nurul Syafiqah Mohamed Mustakim ◽  
Suhaila Sepeai ◽  
Norasikin Ahmad Ludin ◽  
Mohd Asri Mat Teridi ◽  
Mohd Adib Ibrahim

Titanium dioxide (TiO2) nanoparticles thin film has been successfully prepared by a simple hydrothermal process using Hydrochloric Acid (HCl) as chelating agent and Titanium (IV) Chloride (TiCl4) as precursor. In this study, the nanostructured TiO2 thin films were prepared at different hydrothermal reaction times of 2 hours, 5 hours, and 10 hours, and then Ag2S Quantum Dots (QDs) were deposited on the surface of TiO2 nanoparticles using 6 cycles of Successive Ionic Layer Adsorption and Reaction Deposition (SILAR) method. The surface morphology, crystalline structure and optical characterizations of the films were carried out using Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscope (AFM), X-ray Diffraction (XRD) and Ultra-Violet-Visible Near Infrared Spectrophotometer (UV-Vis). For electrical properties, four-point probe investigated the sheet resistance, resistivity, and conductivity of these thin films. TiO2 nanorods were formed with diameter ranged from 33.78 nm to 42.58 nm and the length of TiO2 layer increased as the reaction time increased, from 2.84 μm to 3.93 μm (without Ag2S QDs) and 2.88 μm to 4.85 μm (with Ag2S QDs). When the reaction time reaches 10 hours, nanoflowers can be seen on the surface of film. The XRD results showed that with longer reaction time, the value of full-width at half maximum (FWHM) of the TiO2/ Ag2S QDs thin films decreased from 0.335° to 0.263 while the crystallite size increased from 22.73 nm to 35.39 nm. UV-Vis analysis indicated that the optical band gap of these thin films decreased from 2.68 eV to 2.00 eV (direct) and 2.94 eV to 2.40 eV (indirect) with increased in reaction time. The electrical properties of the films showed that the resistivity varied between 7 x 107 Ω.cm and 5.07 x 107 Ω.cm when the reaction time changed from 2 hours to 10 hours. The conductivity of the TiO2/ Ag2S QDs thin films increased with the increase in hydrothermal reaction time and further increased with the incorporation of Ag2S QDs. Besides, the TiO2 films synthesized hydrothermally for 10 hours showed higher surface roughness as compared to other thin films. The obtained results showed that the TiO2 / Ag2S QDs thin films are applicable as a photoanode for Quantum Dots Sensitized Solar Cell (QDSSCs) applications.

1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2021 ◽  
Vol 902 ◽  
pp. 65-70
Author(s):  
Samar Aboulhadeed ◽  
Mohsen Ghali ◽  
Mohamad M. Ayad

We report on a development of the structural, optical and electrical properties of poly (3,4-ethylenedioxythiophene)-poly (styrenesulfonate) (PEDOT:PSS) conducting polymer thin films. The PEDOT:PSS thin films were deposited by a controlled thin film applicator and their physical properties were found to be effectively modified by isopropanol. The deposited films were investigated by several techniques including XRD, UV–Vis, SPM and Hall-effect. Interestingly, by optimizing the PEDOTS:PSS/ISO volume ratio (v:v), we find that the film charge carriers type can be switched from p to n-type with a high bulk carriers concentration reaching 6×1017 cm-3. Moreover, the film surface roughness becomes smoother and reaching a small value of only 1.9 nm. Such development of the PEDOT:PSS film properties makes it very promising to act as an electron transport layer for different energy applications.


2021 ◽  
Vol 16 (2) ◽  
pp. 136-141
Author(s):  
Jingyuan Zhang ◽  
Yusheng Liu ◽  
Jianing Song ◽  
Mu Zhang ◽  
Xiaodong Li

The Cu2ZnSnS4 (CZTS) thin films were fabricated by the direct solution coating method using a novel non-particulate ink. The ink was formulated using ethanol as the solvent and 1,2-diaminopropane as the complex-ing agent. The pure phase kesterite films with good crystallinity, large-sized crystals and excellent electrical properties were prepared by the spin-coating deposition technique using the homogeneous and air-stable ink. It was found that the subsequent pre-treatment temperature had an influence on the film crystallinity and electrical properties. The best film was obtained by pre-treating the spin-coated film at 250 °C, and then post-annealing at 560 °C. The film shows a narrow bandgap of 1.52 eV and excellent electrical properties, with a resistivity of 0.07 Ocm, carrier concentration of 3.0 x 1017 cm-3, and mobility of 4.15 cm2 V-1 s-1. The novel non-particulate ink is promising for printing high quality CZTS thin films as absorber layers of thin film solar cells.


Author(s):  
Anusuya Sahoo ◽  
A R Jayakrishnan ◽  
K Kamakshi ◽  
J P B Silva ◽  
K C Sekhar ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1970 ◽  
Author(s):  
Donghyeon Ryu ◽  
Alfred Mongare

In this study, a flexible strain sensor is devised using corrugated bilayer thin films consisting of poly(3-hexylthiophene) (P3HT) and poly(3,4-ethylenedioxythiophene)-polystyrene(sulfonate) (PEDOT:PSS). In previous studies, the P3HT-based photoactive non-corrugated thin film was shown to generate direct current (DC) under broadband light, and the generated DC voltage varied with applied tensile strain. Yet, the mechanical resiliency and strain sensing range of the P3HT-based thin film strain sensor were limited due to brittle non-corrugated thin film constituents. To address this issue, it is aimed to design a mechanically resilient strain sensor using corrugated thin film constituents. Buckling is induced to form corrugation in the thin films by applying pre-strain to the substrate, where the thin films are deposited, and releasing the pre-strain afterwards. It is known that corrugated thin film constituents exhibit different optical and electronic properties from non-corrugated ones. Therefore, to design the flexible strain sensor, it was studied to understand how the applied pre-strain and thickness of the PEDOT:PSS conductive thin film affects the optical and electrical properties. In addition, strain effect was investigated on the optical and electrical properties of the corrugated thin film constituents. Finally, flexible strain sensors are fabricated by following the design guideline, which is suggested from the studies on the corrugated thin film constituents, and the DC voltage strain sensing capability of the flexible strain sensors was validated. As a result, the flexible strain sensor exhibited a tensile strain sensing range up to 5% at a frequency up to 15 Hz with a maximum gauge factor ~7.


2021 ◽  
Vol 8 ◽  
Author(s):  
Jinyu Ruan ◽  
Chao Yin ◽  
Tiandong Zhang ◽  
Hao Pan

Ferroelectric multilayer films attract great attention for a wide variation of applications. The synergistic effect by combining different functional layers induces distinctive electrical properties. In this study, ferroelectric BaZr0.2Ti0.8O3/PbZr0.52Ti0.48O3/BaZr0.2Ti0.8O3 (BZT/PZT/BZT) multilayer thin films are designed and fabricated by using the magnetron sputtering method, and a LaNiO3 (LNO) seed layer is introduced. The microstructures and electrical properties of the BZT/PZT/BZT films with and without the LNO seed layer are systematically studied. The results show that the BZT/PZT/BZT/LNO thin film exhibits much lower surface roughness and a preferred (100)-orientation growth, with the growth template and tensile stress provided by the LNO layer. Moreover, an enhanced dielectric constant, decreased dielectric loss, and improved ferroelectric properties are achieved in BZT/PZT/BZT/LNO thin films. This work reveals that the seed layer can play an important role in improving the microstructure and properties of ferroelectric multilayer films.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
J. Santos Cruz ◽  
S. A. Mayén Hernández ◽  
F. Paraguay Delgado ◽  
O. Zelaya Angel ◽  
R. Castanedo Pérez ◽  
...  

Effects on the optical, electrical, and photocatalytic properties of undoped CuS thin films nanodisks vacuum annealed at different temperatures were investigated. The chemical bath prepared CuS thin films were obtained at 40°C on glass substrates. The grain size of13.5±3.5 nm was computed directly from high-resolution transmission electron microscopy (HRTEM) images. The electrical properties were measured by means of both Hall effect at room temperature and dark resistivity as a function of the absolute temperature 100–330 K. The activation energy values were calculated as 0.007, 0.013, and 0.013 eV for 100, 150, and 200°C, respectively. The energy band gap of the films varied in the range of 1.98 up to 2.34 eV. The photocatalytic activity of the CuS thin film was evaluated by employing the degradation of aqueous methylene blue solution in the presence of hydrogen peroxide. The CuS sample thin film annealed in vacuum at 150°C exhibited the highest photocatalytic activity in presence of hydrogen peroxide.


Sign in / Sign up

Export Citation Format

Share Document