Evaluation of Physicochemical and Electrochemical Properties of Surface Modified Pure Titanium Grade II

2021 ◽  
Vol 326 ◽  
pp. 75-88
Author(s):  
Anna Woźniak ◽  
Marcin Adamiak

The paper contains the results of surface modification on the properties of the pure titanium Grade II, obtained by the SLM procedure. In the paper, the analysis of the results of physicochemical properties, such as pitting corrosion test and contact angle measurements and Surface Free Energy calculated were performed. Additionally, the microscopic observation with microchemical analysis, surface topography analysis using Atomic Force Microscopy, surface roughness measurements and wear test were performed too. The studies were carried out on three groups of samples in an initial state (1) (after mechanical treatment - mechanical grinding and polishing) and after surface modification by PVD method using CrN layer (2) and TiN layer (3). Based on the obtained results it can be concluded that the samples with TiN layer were characterized by the optimum properties.

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2829
Author(s):  
Anna Woźniak ◽  
Marcin Adamiak ◽  
Grzegorz Chladek ◽  
Mirosław Bonek ◽  
Witold Walke ◽  
...  

The human body is an extremely aggressive environment in terms of corrosion. Titanium and its alloys are one of the most popular biomaterials used for implant applications due to biocompatibility. However, every element introduced into the body is treated as a foreign body. The human body’s immune response may, therefore, lead to implant rejection and the need for reoperation. For this purpose, it seems important to carry out surface modifications by applying coatings and inter alia by texturing to implants. The objective of this paper is to investigate the effect of surface treatment on the chosen properties of the pure titanium (Grade II) samples obtained by selective laser melting (SLM) processing. The samples were divided into five groups: Initial state (after polishing), after surface modification by the physical vapour deposition (PVD) method—CrN and TiN coatings were deposited on the surface of the tested material, and after laser texturing. The paper presents the results of the microscopic investigation, chemical and phase compositions, and physicochemical and electrochemical properties of the tested samples. Based on the results obtained it can be concluded that the hybrid surface modification shows significant effects on the properties of the pure titanium. The samples with the textured PVD-deposited TiN coatings were characterized by favorable physicochemical properties and were the highest performing in terms of pitting corrosion resistance.


2006 ◽  
Vol 41 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Huyen T. Dang ◽  
Roberto M. Narbaitz ◽  
Takeshi Matsuura ◽  
Kailash C. Khulbe

Abstract Surface modified polyethersulfone (PES) membranes via the addition of different hydrophiLic Surface Modifying Macromolecules (LSMMs) have been developed by Matsuura, Narbaitz and co-workers. This study compares the performance of the best PES-LSMM membrane with nine commercial ultrafiltration membranes manufactured using five different types of base polymers (polyethersulfone, polysulfone, celluloseacetate, polyacrylonitrile and cellulose) in the same range of molecular weight cutoff (MWCO) (from 40 to 120 kDal). All membranes were characterized by using atomic force microscopy, contact angle measurements, solute transport analysis and then evaluated through fouling tests with Ottawa River water (ORW). While PES-LSMM membranes had much lower initial flux than the commercial membranes, they had the highest total organic carbon (TOC) rejection (80%) and the lowest flux reduction (62%). For the commercial membranes, the range of TOC rejections and flux reductions were 62 to 80% and 68 to 80%, respectively. Given their high TOC rejection and relatively high foulant deposition, fouling of the PES-LSMM membranes appears to be controlled by a surface gel.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2013 ◽  
Author(s):  
Jorge López-García ◽  
Florence Cupessala ◽  
Petr Humpolíček ◽  
Marian Lehocký

A commercial formulation of poly(tetrafluoroethylene) (PTFE) sheets were surface modified by using non-thermal air at 40 kHz frequency (DC) and 13.56 MHz radiofrequency (RF) at different durations and powers. In order to assess possible changes of PTFE surface properties, zeta potential (ζ), isoelectric points (IEPs) determinations, contact angle measurements as well as Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) imaging were carried out throughout the experimentation. The overall outcome indicated that ζ-potential and surface energy progressively changed after each treatment, the IEP shifting to lower pH values and the implicit differences, which are produced after each distinct treatment, giving new surface topographies and chemistry. The present approach might serve as a feasible and promising method to alter the surface properties of poly(tetrafluoroethylene).


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
S. Lopera ◽  
R. D. Mansano

We present and compare two processes for plasma-based surface modification of Polydimethylsiloxane (PDMS) to achieve the antisticking behavior needed for PDMS-PDMS molding. The studied processes were oxygen plasma activation for vapor phase silanization and plasma polymerization with tetrafluoromethane/hydrogen mixtures under different processing conditions. We analyzed topography changes of the treated surfaces by atomic force microscopy and contact angle measurements. Plasma treatment were conducted in a parallel plate reactive ion etching reactor at a pressure of 300 mTorr, 30 Watts of RF power and a total flow rate of 30 sccm of a gas mixture. We found for both processes that short, low power, treatments are better to create long-term modifications of the chemistry of the polymer surface while longer processes or thicker films tend to degrade faster with the use leaving rough surfaces with higher adherence to the molded material.


2003 ◽  
Vol 76 (5) ◽  
pp. 1091-1105 ◽  
Author(s):  
Sudip Ray ◽  
Anil K. Bhowmick ◽  
S. Bandyopadhyay

Abstract Topographic and phase imaging in tapping mode atomic force microscopy (TMAFM) has been performed to investigate the effect of surface modification of silica and clay fillers on the morphology and the microdispersion of the filler particles in the rubber matrix. The above fillers have been modified by using surface coating agents like an acrylate monomer (trimethylolpropane triacrylate, TMPTA) or a silane coupling agent (triethoxy vinylsilane, TEVS) followed by electron beam modification at room temperature. Both unmodified and surface modified fillers have been incorporated in an ethylene-octene copolymer rubber. The phase images of the above composites elucidate the reduction in aggregate size due to the filler surface modification, which is more pronounced in the case of silane modification. The results obtained from the section analysis and the histogram of the filler distribution further corroborate the above findings. The corresponding topographic images are characterized by various statistical quantities like roughness parameters and two-dimensional power spectral density (2-D PSD). As compared to the control silica and clay filled rubbers, a noticeable reduction in the surface roughness is observed in the case of modified filled composites. Thus, the whole study based on AFM suggests that the surface modification of the above fillers significantly reduces the filler-filler interaction, which in turn reduces the filler aggregate size and helps in improving the filler dispersion.


2020 ◽  
Author(s):  
Michelina Soccio ◽  
Nadia Lotti ◽  
Andrea Munari ◽  
Esther Rebollar ◽  
Daniel E Martínez-Tong

<p>Nanostructured wrinkles were developed on fully bio-based poly(trimethylene furanoate) (PTF) films by using the technique of Laser Induced Periodic Surface Structures (LIPSS). We investigated the effect of irradiation time on wrinkle formation using an UV pulsed laser source, at a fluence of 8 mJ/cm2. It was found that the pulse range between 600 and 4800 pulses allowed formation of periodic nanometric ripples. The nanostructured surface was studied using a combined macro- and nanoscale approach. We evaluated possible physicochemical changes taking place on the polymer surface after irradiation by infrared spectroscopy, contact angle measurements and atomic force microscopy. The macroscopic physicochemical properties of PTF showed almost no changes after nanostructure formation, differently from the results previously found for the terephthalic counterparts, as poly(ethyleneterephthalate), PET, and poly(trimethyleneterephthalate), PTT. The surface mechanical properties of the nanostructured PTF were found to be improved, as evidenced by nanomechanical force spectroscopy measurements. In particular, an increased Young’s modulus and higher stiffness for the nanostructured sample were measured. <br></p>


Author(s):  
J. Barriga ◽  
B. Ferna´ndez ◽  
E. Abad ◽  
B. Coto

Despite progresses achieved in the technology of MEMS, the tribological problem continues being an unresolved matter. Wear and stick-slip phenomena are many times the origin of failure of these devices. The application of self-assembled monolayers (SAMs) in liquid phase seems to be a solution to this problems. SAMs of octadecyltrichlorosilane (CH3(CH2)17SiCl3, OTS) were attached to Si(100) oxidized in liquid phase. Contact angle measurements were used for characterizing the grade of hydrophobicity. The topography of the coating was obtained with an Atomic Force Microscopy (AFM) in semicontact mode. The images showed the presence of particles related to the polymerization of the precursor molecule during the formation process of the SAMs. Creating the film of lubricant in vapour phase would avoid this undesirable effect. Tribological tests were carried out with a microtribometer in linear reciprocating movement with a ball of 2 mm of diameter (100Cr6 and Si3N4) and load of some milinewtons. Results were compared with those obtained for silicon oxidized without any coating. The coefficient of friction (COF) and wear (substrate and ball) were studied under different test conditions.


1999 ◽  
Vol 38 (Part 1, No. 6B) ◽  
pp. 3936-3939 ◽  
Author(s):  
Futoshi Iwata ◽  
Tarou Matsumoto ◽  
Ryuhei Ogawa ◽  
Akira Sasaki

Author(s):  
Sara Al-Waisawy ◽  
Ahmed Kareem Abdullah ◽  
Hadi A. Hamed ◽  
Ali A. Al-bakri

In this research, the pure titanium foil was treated in glycerol base electrolyte with 0.7 wt.% NH4F and a small amount of H2O at 17 V for 2 hours by electrochemical anodization process in order to prepare Titania nanotube arrays at room temperature (~25 ºC), different water content was added to the electrolyte as a tube enhancing agent. The high density uniform arrays are prepared by using organized and well aligned these tubes. The average size of tube diameter, ranging from 57 to 92 nm which found it increases with increasing water content, and the length of the tube ranging from 2.76 to 4.12 µm, also found to increase with increasing water content and ranging in size of wall thickness from 23 to 35 nm. A possible growth mechanism is presented. The X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were utilized to study the structure and morphology of the Titania films.


Sign in / Sign up

Export Citation Format

Share Document