Research on Pressure-Retaining Performance of Transfer Device for Abyssal Sediments

2021 ◽  
Vol 55 (2) ◽  
pp. 35-44
Author(s):  
Jing Xiao ◽  
Jiawang Chen ◽  
Dongrui Ruan ◽  
Yue Huang ◽  
Yuping Fang ◽  
...  

Abstract In order to retain the activity of microorganisms from abyssal sediment samples, this paper proposes the first device that can be used for the pressure-retaining transfer of seabed sediment samples. The device can transfer sediment from the sampler to the sample processing container and maintain the in-situ pressure of the sample, with the maximum pressure up to 100 MPa. The sample is stirred in the lower cavity of the transfer container and divided into the culture container by pressure difference control. In order to maintain the internal pressure of the device, a pressure stabilization system was designed, and a self-designed conical seal and right-angle combined seal were proposed. The high-pressure test is carried out through the experimental platform, the pressure is maintained for 1.5 h, and the pressure is actively reduced to verify the stability of the pressure stabilization system. The experimental results show that the pressure-retaining performance of the device can meet the transfer of 10,000 m of seabed sediment samples.

Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2830
Author(s):  
Sili Wang ◽  
Mark P. Panning ◽  
Steven D. Vance ◽  
Wenzhan Song

Locating underground microseismic events is important for monitoring subsurface activity and understanding the planetary subsurface evolution. Due to bandwidth limitations, especially in applications involving planetarily-distributed sensor networks, networks should be designed to perform the localization algorithm in-situ, so that only the source location information needs to be sent out, not the raw data. In this paper, we propose a decentralized Gaussian beam time-reverse imaging (GB-TRI) algorithm that can be incorporated to the distributed sensors to detect and locate underground microseismic events with reduced usage of computational resources and communication bandwidth of the network. After the in-situ distributed computation, the final real-time location result is generated and delivered. We used a real-time simulation platform to test the performance of the system. We also evaluated the stability and accuracy of our proposed GB-TRI localization algorithm using extensive experiments and tests.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1885
Author(s):  
Xinyu Wu ◽  
Feng Yang ◽  
Jian Gan ◽  
Zhangqian Kong ◽  
Yan Wu

The silver particles were grown in situ on the surface of wood by the silver mirror method and modified with stearic acid to acquire a surface with superhydrophobic and antibacterial properties. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray energy spectroscopy (XPS) were used to analyze the reaction mechanism of the modification process. Scanning electron microscopy (SEM) and contact angle tests were used to characterize the wettability and surface morphology. A coating with a micro rough structure was successfully constructed by the modification of stearic acid, which imparted superhydrophobicity and antibacterial activity to poplar wood. The stability tests were performed to discuss the stability of its hydrophobic performance. The results showed that it has good mechanical properties, acid and alkali resistance, and UV stability. The durability tests demonstrated that the coating has the function of water resistance and fouling resistance and can maintain the stability of its hydrophobic properties under different temperatures of heat treatment.


2021 ◽  
Vol 11 (9) ◽  
pp. 3770
Author(s):  
Monica Tatarciuc ◽  
George Alexandru Maftei ◽  
Anca Vitalariu ◽  
Ionut Luchian ◽  
Ioana Martu ◽  
...  

Inlay-retained dental bridges can be a viable minimally invasive alternative when patients reject the idea of implant therapy or conventional retained full-coverage fixed dental prostheses, which require more tooth preparation. Inlay-retained dental bridges are indicated in patients with good oral hygiene, low susceptibility to caries, and a minimum coronal tooth height of 5 mm. The present study aims to evaluate, through the finite element method (FEM), the stability of these types of dental bridges and the stresses on the supporting teeth, under the action of masticatory forces. The analysis revealed the distribution of the load on the bridge elements and on the retainers, highlighting the areas of maximum pressure. The results of our study demonstrate that the stress determined by the loading force cannot cause damage to the prosthetic device or to abutment teeth. Thus, it can be considered an optimal economical solution for treating class III Kennedy edentation in young patients or as a provisional pre-implant rehabilitation option. However, special attention must be paid to its design, especially in the connection area between the bridge elements, because the connectors and the retainers represent the weakest parts.


2014 ◽  
Vol 70 (a1) ◽  
pp. C94-C94
Author(s):  
Pawel Kuczera ◽  
Walter Steurer

The structure of d(ecagonal)-Al-Cu-Rh has been studied as a function of temperature by in-situ single-crystal X-ray diffraction in order to contribute to the discussion on energy or entropy stabilization of quasicrystals (QC) [1]. The experiments were performed at 293 K, 1223 K, 1153 K, 1083 K, and 1013 K. A common subset of 1460 unique reflections was used for the comparative structure refinements at each temperature. The results obtained for the HT structure refinements of d-Al-Cu-Rh QC seem to contradict a pure phasonic-entropy-based stabilization mechanism [2] for this QC. The trends observed for the ln func(I(T1 )/I(T2 )) vs.|k⊥ |^2 plots indicate that the best on-average quasiperiodic order exists between 1083 K and 1153 K, however, what that actually means is unclear. It could indicate towards a small phasonic contribution to entropy, but such contribution is not seen in the structure refinements. A rough estimation of the hypothetic phason instability temperature shows that it would be kinetically inaccessible and thus the phase transition to a 12 Å low T structure (at ~800 K) is most likely not phason-driven. Except for the obvious increase in the amplitude of the thermal motion, no other significant structural changes, in particular no sources of additional phason-related configurational entropy, were found. All structures are refined to very similar R-values, which proves that the quality of the refinement at each temperature is the same. This suggests, that concerning the stability factors, some QCs could be similar to other HT complex intermetallic phases. The experimental results clearly show that at least the ~4 Å structure of d-Al-Cu-Rh is a HT phase therefore entropy plays an important role in its stabilisation mechanism lowering the free energy. However, the main source of this entropy is probably not related to phason flips, but rather to lattice vibrations, occupational disorder unrelated to phason flips like split positions along the periodic axis.


2013 ◽  
Vol 671-674 ◽  
pp. 245-250
Author(s):  
Wen Hui Tan ◽  
Ya Liang Li ◽  
Cong Cong Li

At present, in-situ stress was not considered in Limit Equilibrium Method (LEM) of slopes, the influence of in-situ stress is very small on the stability of conventional slopes, but in deep-depressed open-pit mines, the influence should not be neglected. Formula for calculating the Factor of Safety (FOS) under the effect of horizontal in-situ stress was deduced using General Slice Method (GSM) of two-dimensional (2D) limit equilibrium method in this paper,a corresponding program SSLOPE was built, and the software was used in a deep- depressed open-pit iron mine. The results show that the FOS of the slope decreased by 20% when horizontal in-situ stress is considered, some reinforcements must be taken. Therefore, the influence of in-situ stress on slope stability should be taken into account in deep open –pit mines.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 900 ◽  
Author(s):  
Fuxiang Zhang ◽  
Yang Tong ◽  
Ke Jin ◽  
Hongbin Bei ◽  
William Weber ◽  
...  

In the present study, we have revealed that (NiCoFeCr)100−xPdx (x= 1, 3, 5, 20 atom%) high-entropy alloys (HEAs) have both local- and long-range lattice distortions by utilizing X-ray total scattering, X-ray diffraction, and extended X-ray absorption fine structure methods. The local lattice distortion determined by the lattice constant difference between the local and average structures was found to be proportional to the Pd content. A small amount of Pd-doping (1 atom%) yields long-range lattice distortion, which is demonstrated by a larger (200) lattice plane spacing than the expected value from an average structure, however, the degree of long-range lattice distortion is not sensitive to the Pd concentration. The structural stability of these distorted HEAs under high-pressure was also examined. The experimental results indicate that doping with a small amount of Pd significantly enhances the stability of the fcc phase by increasing the fcc-to-hcp transformation pressure from ~13.0 GPa in NiCoFeCr to 20–26 GPa in the Pd-doped HEAs and NiCoFeCrPd maintains its fcc lattice up to 74 GPa, the maximum pressure that the current experiments have reached.


1996 ◽  
Vol 451 ◽  
Author(s):  
C. Henry de Villeneuve ◽  
J. Pinson ◽  
F. Ozanam ◽  
J. N. Chazalviel ◽  
P. Allongue

ABSTRACTThis works addresses the question of the direct attachment of organic molecules on Si(111) by an electrochemical method. Anodic grafting of -OR group is demonstrated by in-situ STM and the LDOS characterized. The grafting of aryl groups, by reduction of aryl diazonium salts in aqueous solution, is also described. This approach leads to well ordered and close-packed thin molecular films with various functionality. Different chemical and structural characterizations conclude to a Si-C binding, between the Si surface and aryl groups. The stability of films is also investigated.


2011 ◽  
Vol 90-93 ◽  
pp. 2307-2312 ◽  
Author(s):  
Wen Jiang Li ◽  
Su Min Zhang ◽  
Xian Min Han

The stability judgement of surrounding rock is one of the key jobs in tunnel engineering. Taking the Erlongdong fault bundle section of Guanjiao Tunnel as the background, the stability of surrounding rock during construction of soft rock tunnel was discussed preliminarily. Based on plastic strain catastrophe theory, and combining numerical results and in-situ data, the limit displacements for stability of surrounding rock were analyzed and obtained corresponding to the in-situ monitoring technology. It shows that the limit displacements obtained corresponds to engineering practice primarily. The plastic strain catastrophe theory under unloading condition provides new thought for ground stability of deep soft rock tunnel and can be good guidance and valuable reference to construction decision making and deformation managing of similar tunnels.


2017 ◽  
Vol 86 (11) ◽  
pp. 999-1023 ◽  
Author(s):  
O N Martyanov ◽  
Yu V Larichev ◽  
E V Morozov ◽  
S N Trukhan ◽  
S G Kazarian
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document