scholarly journals Differential Role of IFN-γ-Inducible Protein 10 kDa in a Cockroach Antigen-Induced Model of Allergic Airway Hyperreactivity: Systemic Versus Local Effects

2002 ◽  
Vol 169 (12) ◽  
pp. 7045-7053 ◽  
Author(s):  
Molly S. Thomas ◽  
Steven L. Kunkel ◽  
Nicholas W. Lukacs
2009 ◽  
Vol 106 (37) ◽  
pp. 15861-15866 ◽  
Author(s):  
Knut Tore Lappegård ◽  
Dorte Christiansen ◽  
Anne Pharo ◽  
Ebbe Billmann Thorgersen ◽  
Bernt Christian Hellerud ◽  
...  

Complement component C5 is crucial for experimental animal inflammatory tissue damage; however, its involvement in human inflammation is incompletely understood. The responses to Gram-negative bacteria were here studied taking advantage of human genetic complement-deficiencies—nature's own knockouts—including a previously undescribed C5 defect. Such deficiencies provide a unique tool for investigating the biological role of proteins. The experimental conditions allowed cross-talk between the different inflammatory pathways using a whole blood model based on the anticoagulant lepirudin, which does not interfere with the complement system. Expression of tissue factor, cell adhesion molecules, and oxidative burst depended highly on C5, mediated through the activation product C5a, whereas granulocyte enzyme release relied mainly on C3 and was C5a-independent. Release of cytokines and chemokines was mediated to varying degrees by complement and CD14; for example, interleukin (IL)-1β and IL-8 were more dependent on complement than IFN-γ and IL-6, which were highly dependent on CD14. IL-1 receptor antagonist (IL-1ra) and IFN-γ inducible protein 10 (IP-10) were fully dependent on CD14 and inversely regulated by complement, that is, complement deficiency and complement inhibition enhanced their release. Granulocyte responses were mainly complement-dependent, whereas monocyte responses were more dependent on CD14. Notably, all responses were abolished by combined neutralization of complement and CD14. The present study provides important insight into the comprehensive role of complement in human inflammatory responses to Gram-negative bacteria.


2002 ◽  
Vol 168 (10) ◽  
pp. 5278-5286 ◽  
Author(s):  
Benjamin D. Medoff ◽  
Alain Sauty ◽  
Andrew M. Tager ◽  
James A. Maclean ◽  
R. Neal Smith ◽  
...  

2006 ◽  
Vol 291 (2) ◽  
pp. G345-G354 ◽  
Author(s):  
Yusuke Kawauchi ◽  
Kenji Suzuki ◽  
Shiro Watanabe ◽  
Satoshi Yamagiwa ◽  
Hiroyuki Yoneyama ◽  
...  

Exocrinopathy and pancreatitis-like injury were developed in C57BL/6 (B6) mice infected with LP-BM5 murine leukemia virus, which is known to induce murine acquired immunodeficiency syndrome (MAIDS). The role of chemokines, especially CXCL10/interferon (IFN)-γ-inducible protein 10 (IP-10), a chemokine to attract CXCR3+T helper 1-type CD4+T cells, has not been investigated thoroughly in the pathogenesis of pancreatitis. B6 mice were inoculated intraperitoneally with LP-BM5 and then injected every week with either an antibody against IP-10 or a control antibody. Eight weeks after infection, we analyzed the effect of IP-10 neutralization. Anti-IP-10 antibody treatment did not change the generalized lymphadenopathy and hepatosplenomegaly of mice with MAIDS. The treatment significantly reduced the number of IP-10- and CXCR3-positive cells in the mesenteric lymph nodes (mLNs) but not the phenotypes and gross numbers of cells. In contrast, IP-10 neutralization reduced the number of mononuclear cells infiltrating into the pancreas. Anti-IP-10 antibody treatment did not change the numbers of IFN-γ+and IL10+cells in the mLN but significantly reduced their numbers, especially IFN-γ+and IL-10+CD4+T cells and IFN-γ+Mac-1+cells, in the pancreas. IP-10 neutralization ameliorated the pancreatic lesions of mice with MAIDS probably by blocking the cellular infiltration of CD4+T cells and IFN-γ+Mac-1+cells into the pancreas at least at 8 wk after infection, suggesting that IP-10 and these cells might play a key role in the development of chronic autoimmune pancreatitis.


2000 ◽  
Vol 165 (3) ◽  
pp. 1548-1556 ◽  
Author(s):  
Tan Jinquan ◽  
Chen Jing ◽  
Henrik H. Jacobi ◽  
Claus M. Reimert ◽  
Anders Millner ◽  
...  

2001 ◽  
Vol 193 (8) ◽  
pp. 975-980 ◽  
Author(s):  
Wayne W. Hancock ◽  
Wei Gao ◽  
Vilmos Csizmadia ◽  
Kerrie L. Faia ◽  
Nida Shemmeri ◽  
...  

An allograft is often considered an immunologically inert playing field on which host leukocytes assemble and wreak havoc. However, we demonstrate that graft-specific physiologic responses to early injury initiate and promulgate destruction of vascularized grafts. Serial analysis of allografts showed that intragraft expression of the three chemokine ligands for the CXC chemo-kine receptor CXCR3 was induced in the order of interferon (IFN)-γ–inducible protein of 10 kD (IP-10, or CXCL10), IFN-inducible T cell α-chemoattractant (I-TAC; CXCL11), and then monokine induced by IFN-γ (Mig, CXCL9). Initial IP-10 production was localized to endothelial cells, and only IP-10 was induced by isografting. Anti–IP-10 monoclonal antibodies prolonged allograft survival, but surprisingly, IP-10–deficient (IP-10−/−) mice acutely rejected allografts. However, though allografts from IP-10+/+ mice were rejected by day 7, hearts from IP-10−/− mice survived long term. Compared with IP-10+/+ donors, use of IP-10−/− donors reduced intragraft expression of cytokines, chemokines and their receptors, and associated leukocyte infiltration and graft injury. Hence, tissue-specific generation of a single chemokine in response to initial ischemia/reperfusion can initiate progressive graft infiltration and amplification of multiple effector pathways, and targeting of this proximal chemokine can prevent acute rejection. These data emphasize the pivotal role of donor-derived IP-10 in initiating alloresponses, with implications for tissue engineering to decrease immunogenicity, and demonstrate that chemokine redundancy may not be operative in vivo.


2022 ◽  
Author(s):  
Wei-Jia Luo ◽  
Sung-Liang Yu ◽  
Chia-Ching Chang ◽  
Min-Hui Chien ◽  
Keng-Mao Liao ◽  
...  

Heat shock protein (HSP) 40 has emerged as a key actor in both innate and adaptive immunity, whereas the role of HLJ1, a molecular chaperone in HSP40 family, in modulating endotoxin–induced sepsis severity is still unclear. Here, we use single-cell RNA sequencing to characterize mouse liver nonparenchymal cell populations under LPS (lipopolysaccharide) stimulation, and show that HLJ1 deletion affected IFN-γ-related gene signatures in distinct immune cell clusters. HLJ1 deficiency also leads to reduced serum levels of IL-12 in LPS-treated mice, contributing to dampened production of IFN-γ in natural killer cells but not CD4+ or CD8+ T cells, and subsequently to improved survival rate. Adoptive transfer of HLJ1-deleted macrophages into LPS-treated mice results in reduced IL-12 and IFN-γ levels and protects the mice from IFN-γ–dependent mortality. In the context of molecular mechanisms, HLJ1 is an LPS-inducible protein in macrophages and converts misfolded IL-12p35 homodimers to monomers, which maintains bioactive IL-12p70 heterodimerization and secretion. This study suggests HLJ1 causes IFN-γ–dependent septic lethality by promoting IL-12 heterodimerization, and targeting HLJ1 has therapeutic potential in inflammatory diseases involving activating IL-12/IFN-γ axis.


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 757
Author(s):  
Sandra Barroso-Arévalo ◽  
Jose A. Barasona ◽  
Estefanía Cadenas-Fernández ◽  
José M. Sánchez-Vizcaíno

African swine fever virus (ASFv) is one of the most challenging pathogens to affect both domestic and wild pigs. The disease has now spread to Europe and Asia, causing great damage to the pig industry. Although no commercial vaccine with which to control the disease is, as yet, available, some potential vaccine candidates have shown good results in terms of protection. However, little is known about the host immune mechanisms underlying that protection, especially in wild boar, which is the main reservoir of the disease in Europe. Here, we study the role played by two cytokines (IL-10 and IFN-γ) in wild boar orally inoculated with the attenuated vaccine candidate Lv17/WB/Rie1 and challenged with a virulent ASFv genotype II isolate. A group of naïve wild boar challenged with the latter isolate was also established as a control group. Our results showed that both cytokines play a key role in protecting the host against the challenge virus. While high levels of IL-10 in serum may trigger an immune system malfunctioning in challenged animals, the provision of stable levels of this cytokine over time may help to control the disease. This, together with high and timely induction of IFN-γ by the vaccine candidate, could help protect animals from fatal outcomes. Further studies should be conducted in order to support these preliminary results and confirm the role of these two cytokines as potential markers of the evolution of ASFV infection.


Sign in / Sign up

Export Citation Format

Share Document