scholarly journals The Role of Liver Biopsy in Detection of Hepatic Oxidative Stress

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Mahmoud Rushdi Abd Ellah

The goal of the current paper is to explore the role of liver biopsy as a tool in detection of hepatic oxidative stress, with brief notes on different types of free radicals, antioxidants, hepatic and blood oxidative stress, and lipid peroxidation. Hepatic oxidative stress was investigated for many years in human and animals, but most of the studies performed in animals were concerned with studying oxidative status in the liver tissues after slaughtering or euthanasia. However, in human medicine, a large number of studies were implemented to investigate the status of antioxidants in liver biopsy specimens. Similar studies are required in animals, as the changes in hepatic antioxidants and formation of lipid peroxide give a good idea about the condition of the liver. On the other hand, hepatic disease may present without significant effect on blood oxidative status, and, consequently, the best way to detect the status of hepatic oxidants and antioxidants is through measuring in liver biopsy. Measuring antioxidants status directly in the liver tissues gives an accurate estimation about the condition of the liver, permits the diagnosis of hepatic dysfunction, and helps to determine the degree of deterioration in the hepatic cells.

Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2401
Author(s):  
Shih-Kai Chiang ◽  
Shuen-Ei Chen ◽  
Ling-Chu Chang

Heme oxygenases (HOs) act on heme degradation to produce carbon monoxide (CO), free iron, ferritin, and biliverdin. Upregulation of cellular HO-1 levels is signature of oxidative stress for its downstream effects particularly under pro-oxidative status. Subcellular traffics of HO-1 to different organelles constitute a network of interactions compromising a variety of effectors such as pro-oxidants, ROS, mitochondrial enzymes, and nucleic transcription factors. Some of the compartmentalized HO-1 have been demonstrated as functioning in the progression of cancer. Emerging data show the multiple roles of HO-1 in tumorigenesis from pathogenesis to the progression to malignancy, metastasis, and even resistance to therapy. However, the role of HO-1 in tumorigenesis has not been systematically addressed. This review describes the crosstalk between HO-1 and oxidative stress, and following redox regulation in the tumorigenesis. HO-1-regulated signaling pathways are also summarized. This review aims to integrate basic information and current progress of HO-1 in cancer research in order to enhance the understandings and facilitate following studies.


Author(s):  
Farouk Kamel Elbaz ◽  
Hanan F Aly ◽  
Wagdy Kb Khalil ◽  
Gamila H Ali ◽  
Hoda F Booles

ABSTRACTObjective: The present study was conducted to investigate the role of Haematococcus pluvialis extract against oxidative damage, the inflammatory,and apoptotic impacts characterizing the neurodegenerative disorders.Methods: Oxidative stress, B-cell lymphoma 2, brain-derived neurotrophic factor, the inflammation, apoptotic and antiapoptotic impacts in Alzheimer’sdisease (AD) rats were determined through assessment of glutathione reduced (GSH), GSH peroxidase (GPx), lipid peroxide (malondialdehyde), thecytokines level such as tumor necrosis factor-alpha (TNF-α), interleukins (IL-6 and IL-1β), and macrophage inflammation protein (MIP1α) in AD rats.Moreover, the expression of phosphoinositide 3-kinase (PI3K) and serine-threonine protein kinase (Akt) genes regulating the apoptosis in AD ratswas measured.Results: The results revealed that levels of TNF-α, IL-6, IL-1β, and MIP1α were significantly increased in AD rats. Moreover, the expression of PI3Kand Akt genes was downregulated which it was coincided with the increase of apoptosis in AD rats. On the other hand, treatment of AD rats withH. pluvialis extract decreased the oxidative stress of AD in the form of prevention the inflammatory and apoptotic impacts.Conclusion: H. pluvialis could be used for ameliorating AD due to its role in decreases the oxidative stress of AD in the form of prevention theinflammatory and apoptotic impacts. H. pluvialis is a very attractive candidate for uses against neurodegenerative disorders that are caused byincreases oxidative stress inducing neuroinflammation and apoptosis.Keywords: Haematococcus pluvialis, Oxidative stress, Inflammation biomarkers, Apoptotic and antiapoptotic impacts.


2019 ◽  
Vol 166 (5) ◽  
pp. 415-421 ◽  
Author(s):  
Nuo Ming ◽  
Ha Sen Ta Na ◽  
Jin-Ling He ◽  
Qing-Tao Meng ◽  
Zhong-Yuan Xia

Abstract Reducing oxidative stress is an effective method to prevent hepatic ischaemia/reperfusion injury (HIRI). This study focuses on the role of propofol on the oxidative stress of hepatic cells and the involved lncRNA-TUG1/Brahma-related gene 1 (Brg1) pathway in HIRI mice. The mouse HIRI model was established and was intraperitoneally injected with propofol postconditioning. Hepatic injury indexes were used to evaluate HIRI. The oxidative stress was indicated by increasing 8-isoprostane concentration. Mouse hepatic cell line AML12 was treated with hypoxia and subsequent reoxygenation (H/R). The targeted regulation of lncRNA-TUG1 on Brg1 was proved by RNA pull-down, RIP (RNA-binding protein immunoprecipitation) and the expression level of Brg1 responds to silencing or overexpression of lncRNA-TUG1. Propofol alleviates HIRI and induces the upregulation of lncRNA-TUG1 in the mouse HIRI model. Propofol increases cell viability and lncRNA-TUG1 expression level in H/R-treated hepatic cells. In H/R plus propofol-treated hepatic cells, lncRNA-TUG1 silencing reduces cell viability and increased oxidative stress. LncRNA-TUG1 interacts with Brg1 protein and keeps its level via inhibiting its degradation. Brg1 overexpression reverses lncRNA-TUG1 induced the reduction of cell viability and the increase in oxidative stress. LncRNA-TUG1 silencing abrogates the protective role of propofol against HIRI in the mouse HIRI model. LncRNA-TUG1 has a targeted regulation of Brg1, and thereby affects the oxidative stress induced by HIRI. This pathway mediates the protective effect of propofol against HIRI of hepatic cell.


2016 ◽  
Vol 94 (10) ◽  
pp. 1074-1082 ◽  
Author(s):  
Dragan Hrncic ◽  
Jelena Mikić ◽  
Aleksandra Rasic-Markovic ◽  
Milica Velimirović ◽  
Tihomir Stojković ◽  
...  

The aim of this study was to examine the effects of a methionine-enriched diet on anxiety-related behavior in rats and to determine the role of the brain oxidative status in these alterations. Adult male Wistar rats were fed from the 30th to 60th postnatal day with standard or methionine-enriched diet (double content comparing with standard diet: 7.7 g/kg). Rats were tested in open field and light–dark tests and afterwards oxidative status in the different brain regions were determined. Hyperhomocysteinemia induced by methionine-enriched diet in this study decreased the number of rearings, as well as the time that these animals spent in the center of the open field, but increased index of thigmotaxy. Oxidative status was selectively altered in the examined regions. Lipid peroxidation was significantly increased in the cortex and nc. caudatus of rats developing hyperhomocysteinemia, but unaltered in the hippocampus and thalamus. Based on the results of this research, it could be concluded that hyperhomocysteinemia induced by methionine nutritional overload increased anxiety-related behavior in rats. These proanxiogenic effects could be, at least in part, a consequence of oxidative stress in the rat brain.


2021 ◽  
Vol 64 (2) ◽  
pp. 199-206
Author(s):  
Edakkukaran Sudhakaran Sumi ◽  
Pavan Kumar Dara ◽  
Rosemol Jacob Mannuthy ◽  
Balaraman Ganesan ◽  
Rangasamy Anandan ◽  
...  

Methotrexate (MTX), an antifolate drug, is extensively prescribed for patients suffering from diseases like cancer, psoriasis, neoplasms, and rheumatoid arthritis. Despite its effectiveness, MTX sometimes finds limited application because its undesirable side effects, including hepatic or renal impairment, bone marrow toxicity and gastrointestinal mucosal injury. Squalene, a highly unsaturated isoprenoid compound, isolated from shark liver oil has great potential in neutralizing the damaging effects triggered by free radicals. Therefore, in this study, the protective role of dietary squalene supplementation on oxidative stress induced by methotrexate in experimental rats was evaluated. A significant reduction was displayed in the activities of catalase (CAT) and superoxide dismutase (SOD) in MTX-intoxicated groups compared to other groups. Similarly, the activities of glutathione dependant enzymes (GPx and GST) and reduced glutathione (GSH) in MTX-induced groups were shown to be lower compared to the untreated control. Increased LPO (lipid peroxide) level was found in MTX-intoxicated groups compared to other groups. In addition, alterations in the levels of liver marker enzymes like AST, ALP, ALT, and LDH were noticed in MTX intoxicated groups compared to other groups. Biochemical results were confirmed by the histopathological examination of liver sections. In conclusion, the result obtained in the present study proposes that squalene exerts antioxidant activity and is capable of ameliorating oxidative stress and liver injury induced by MTX.


2009 ◽  
Vol 2 (2) ◽  
pp. 63-67 ◽  
Author(s):  
Jaouad Bouayed ◽  
Hassan Rammal ◽  
Rachid Soulimani

High O2consumption, modest antioxidant defenses and a lipid-rich constitution make the brain highly vulnerable to redox imbalances. Oxidative damage in the brain causes nervous system impairment. Recently, oxidative stress has also been implicated in depression, anxiety disorders and high anxiety levels. The findings which establish a link between oxidative stress and pathological anxiety have inspired a number of other recent studies focusing on the link between oxidative status and normal anxiety and also on a possible causal relationship between cellular oxidative stress and emotional stress. This review examines the recent discoveries made on the link between oxidative status and normal anxiety levels and the putative role of oxidative stress in genesis of anxiety. We discuss the different opinions and questions that exist in the field and review the methodological approaches that are being used to determine a causal relationship between oxidative and emotional stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elena C. Gross ◽  
Niveditha Putananickal ◽  
Anna-Lena Orsini ◽  
Deborah R. Vogt ◽  
Peter S. Sandor ◽  
...  

AbstractIncreasing evidence points towards the role of mitochondrial functioning, energy metabolism, and oxidative stress in migraine. However not all previous research has been conclusive and some mitochondrial function/oxidative stress markers have not yet been examined. To this end, alpha-lipoic acid (ALA), total thiols, total plasma antioxidant capacity (TAC), lipid peroxide (PerOx), oxidised LDL (oxLDL), HbA1c and lactate were determined in the serum of 32 higher frequency episodic migraineurs (5–14 migraine days/ months, 19 with aura, 28 females) in this cross-sectional study. The majority of patients had abnormally low ALA and lactate levels (87.5% and 78.1%, respectively). 46.9% of the patients had abnormally high PerOx values, while for thiols and TAC over one third of patients had abnormally low values (31.2% and 37.5%, respectively). 21.9% of patients had abnormally low HbA1c and none had an HbA1c level above 5.6%. oxLDL was normal in all but one patient. This study provides further evidence for a role of oxidative stress and altered metabolism in migraine pathophysiology, which might represent a suitable therapeutic target. ALA, being too low in almost 90% of patients, might represent a potential biomarker for migraine. Further research is needed to replicate these results, in particular a comparison with a control group.This study is part of the trial registration: ClinicalTrials.gov: NCT03132233, registered on 27.04.2017, https://clinicaltrials.gov/ct2/show/NCT03132233.


Sign in / Sign up

Export Citation Format

Share Document