Abstract MP204: Pyruvate Dehydrogenase Kinase Isozyme Specific Regulation Of Protein Acetylation In Cardiac Tissue

2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Chae-Myeong Ha ◽  
Adam R Wende

Heart disease is the number one cause of death in developed countries. Metabolic diseases influence the severity of heart disease linked to risk factors which are thought to alter epigenetic mechanisms. Pyruvate dehydrogenase (PDH) kinases (PDK), which phosphorylate and reduce the activity of PDH the nexus of glucose oxidation and fatty acid oxidation are sensitive to metabolic status. Four isozymes of PDK (PDK1-4) exist with PDK2 and PDK4 as the major regulators in cardiac tissue. Owing to the role of PDH in regulating pyruvate to acetyl-CoA, we hypothesized that PDK inhibition may regulate protein acetylation through increasing acetyl-CoA because of PDH activation leading to post-translational modifications both directly to proteins in metabolic pathways as well as to histones associated with the genes encoding them. To test this, we utilized PDK2 germline knockout mice (P2KO), PDK4 germline knockout mice (P4KO), and PDK2 and PDK4 double knockout (DKO) mice for molecular analysis. Our results identify a novel increase in whole-cell protein acetylation in P2KO left ventricle tissue (LV). However, protein acetylation in P4KO LV was not changed compared to WT mice. The most robust protein acetylation was observed in the DKO LV. Furthermore, when we explored sub-cellular distribution of protein acetylation, the greatest increases were found on cytoplasmic proteins, with moderate changes in mitochondrial proteins. We also found PDK2 ablation induces histone H3 acetylation, which may also lead to changes in gene expression. Moreover, this protein acetylation in P2KO and DKO was not seen in other tissues examined (e.g., liver, skeletal muscle). The hyperacetylation is robust in male LV compared to female LV. In conclusion, our study supports a novel protein acetylation mechanism that is both tissue and PDK isozyme specific highlighting the role of PDK2, which is relatively understudied compared to PDK4 in heart disease. Further study will evaluate if the hyperacetylation has a beneficial effect in various heart disease settings as well as identify the impact on changes in gene expression. This study supports PDK isozyme-specific inhibition strategies will be required to develop therapeutic targets of cardiovascular disease with metabolic inflexibility.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anna S. E. Cuomo ◽  
Giordano Alvari ◽  
Christina B. Azodi ◽  
Davis J. McCarthy ◽  
Marc Jan Bonder ◽  
...  

Abstract Background Single-cell RNA sequencing (scRNA-seq) has enabled the unbiased, high-throughput quantification of gene expression specific to cell types and states. With the cost of scRNA-seq decreasing and techniques for sample multiplexing improving, population-scale scRNA-seq, and thus single-cell expression quantitative trait locus (sc-eQTL) mapping, is increasingly feasible. Mapping of sc-eQTL provides additional resolution to study the regulatory role of common genetic variants on gene expression across a plethora of cell types and states and promises to improve our understanding of genetic regulation across tissues in both health and disease. Results While previously established methods for bulk eQTL mapping can, in principle, be applied to sc-eQTL mapping, there are a number of open questions about how best to process scRNA-seq data and adapt bulk methods to optimize sc-eQTL mapping. Here, we evaluate the role of different normalization and aggregation strategies, covariate adjustment techniques, and multiple testing correction methods to establish best practice guidelines. We use both real and simulated datasets across single-cell technologies to systematically assess the impact of these different statistical approaches. Conclusion We provide recommendations for future single-cell eQTL studies that can yield up to twice as many eQTL discoveries as default approaches ported from bulk studies.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 498
Author(s):  
Mojdeh Khajehlandi ◽  
Lotfali Bolboli ◽  
Marefat Siahkuhian ◽  
Mohammad Rami ◽  
Mohammadreza Tabandeh ◽  
...  

Exercise can ameliorate cardiovascular dysfunctions in the diabetes condition, but its precise molecular mechanisms have not been entirely understood. The aim of the present study was to determine the impact of endurance training on expression of angiogenesis-related genes in cardiac tissue of diabetic rats. Thirty adults male Wistar rats were randomly divided into three groups (N = 10) including diabetic training (DT), sedentary diabetes (SD), and sedentary healthy (SH), in which diabetes was induced by a single dose of streptozotocin (50 mg/kg). Endurance training (ET) with moderate-intensity was performed on a motorized treadmill for six weeks. Training duration and treadmill speed were increased during five weeks, but they were kept constant at the final week, and slope was zero at all stages. Real-time polymerase chain reaction (RT-PCR) analysis was used to measure the expression of myocyte enhancer factor-2C (MEF2C), histone deacetylase-4 (HDAC4) and Calmodulin-dependent protein kinase II (CaMKII) in cardiac tissues of the rats. Our results demonstrated that six weeks of ET increased gene expression of MEF2C significantly (p < 0.05), and caused a significant reduction in HDAC4 and CaMKII gene expression in the DT rats compared to the SD rats (p < 0.05). We concluded that moderate-intensity ET could play a critical role in ameliorating cardiovascular dysfunction in a diabetes condition by regulating the expression of some angiogenesis-related genes in cardiac tissues.


Genome ◽  
2020 ◽  
pp. 1-11
Author(s):  
Bahar Patlar ◽  
Alberto Civetta

It has long been acknowledged that changes in the regulation of gene expression may account for major organismal differences. However, we still do not fully understand how changes in gene expression evolve and how do such changes influence organisms’ differences. We are even less aware of the impact such changes might have in restricting gene flow between species. Here, we focus on studies of gene expression and speciation in the Drosophila model. We review studies that have identified gene interactions in post-mating reproductive isolation and speciation, particularly those that modulate male gene expression. We also address studies that have experimentally manipulated changes in gene expression to test their effect in post-mating reproductive isolation. We highlight the need for a more in-depth analysis of the role of selection causing disrupted gene expression of such candidate genes in sterile/inviable hybrids. Moreover, we discuss the relevance to incorporate more routinely assays that simultaneously evaluate the potential effects of environmental factors and genetic background in modulating plastic responses in male genes and their potential role in speciation.


Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. 723-733 ◽  
Author(s):  
Huijuan Zhang ◽  
Guishuan Wang ◽  
Lin Liu ◽  
Xiaolin Liang ◽  
Yu Lin ◽  
...  

The chromatoid body (CB) is a specific cloud-like structure in the cytoplasm of haploid spermatids. Recent findings indicate that CB is identified as a male germ cell-specific RNA storage and processing center, but its function has remained elusive for decades. In somatic cells, KH-type splicing regulatory protein (KSRP) is involved in regulating gene expression and maturation of select microRNAs (miRNAs). However, the function of KSRP in spermatogenesis remains unclear. In this study, we showed that KSRP partly localizes in CB, as a component of CB. KSRP interacts with proteins (mouse VASA homolog (MVH), polyadenylate-binding protein 1 (PABP1) and polyadenylate-binding protein 2 (PABP2)), mRNAs (Tnp2 and Odf1) and microRNAs (microRNA-182) in mouse CB. Moreover, KSRP may regulate the integrity of CB via DDX5-miRNA-182 pathway. In addition, we found abnormal expressions of CB component in testes of Ksrp-knockout mice and of patients with hypospermatogenesis. Thus, our results provide mechanistic insight into the role of KSRP in spermatogenesis.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Jessie Colin ◽  
Domenico Libri ◽  
Odil Porrua

Recent studies on yeast transcriptome have revealed the presence of a large set of RNA polymerase II transcripts mapping to intergenic and antisense regions or overlapping canonical genes. Most of these ncRNAs (ncRNAs) are subject to termination by the Nrd1-dependent pathway and rapid degradation by the nuclear exosome and have been dubbed cryptic unstable transcripts (CUTs). CUTs are often considered as by-products of transcriptional noise, but in an increasing number of cases they play a central role in the control of gene expression. Regulatory mechanisms involving expression of a CUT are diverse and include attenuation, transcriptional interference, and alternative transcription start site choice. This review focuses on the impact of cryptic transcription on gene expression, describes the role of the Nrd1-complex as the main actor in preventing nonfunctional and potentially harmful transcription, and details a few systems where expression of a CUT has an essential regulatory function. We also summarize the most recent studies concerning other types of ncRNAs and their possible role in regulation.


2020 ◽  
Author(s):  
Benjamin Ng ◽  
Anissa A. Widjaja ◽  
Sivakumar Viswanathan ◽  
Jinrui Dong ◽  
Sonia P. Chothani ◽  
...  

AbstractGenetic loss of function (LOF) in IL11RA infers IL11 signaling as important for fertility, fibrosis, inflammation and craniosynostosis. The impact of genetic LOF in IL11 has not been characterized. We generated IL11-knockout (Il11-/-) mice, which are born in normal Mendelian ratios, have normal hematological profiles and are protected from bleomycin-induced lung fibro-inflammation. Noticeably, baseline IL6 levels in the lungs of Il11-/- mice are lower than those of wild-type mice and are not induced by bleomycin damage, placing IL11 upstream of IL6. Lung fibroblasts from Il11-/- mice are resistant to pro-fibrotic stimulation and show evidence of reduced autocrine IL11 activity. Il11-/- female mice are infertile. Unlike Il11ra1-/- mice, Il11-/- mice do not have a craniosynostosis-like phenotype and exhibit mildly reduced body weights. These data highlight similarities and differences between LOF in IL11 or IL11RA while establishing further the role of IL11 signaling in fibrosis and stromal inflammation.


2009 ◽  
Vol 390 (2) ◽  
pp. 91-97 ◽  
Author(s):  
Achim Krüger

Abstract Knockout mice are the gold standard to probe for the role of a specific protease within the interacting network of proteases, substrates, and inhibitors. This proteolytic network, or protease web, determines cell signaling and organ homeostasis. Therefore, protease deficiency or inhibition is intrinsically tied to alterations within this network, always leading to new molecular phenotypes, which define susceptibility of an organ to disease. Furthermore, recent hints, mainly from research on matrix metalloproteinases, about the impact of the protease web on inter-organ signaling molecules suggest the existence of a proteolytic internet of communicating local organ- or molecular polymorphism-specific networks, thereby defining homeostasis and disease susceptibility in the whole organism.


2019 ◽  
Vol 116 (20) ◽  
pp. 9893-9902 ◽  
Author(s):  
Christopher M. Uyehara ◽  
Daniel J. McKay

The ecdysone pathway was among the first experimental systems employed to study the impact of steroid hormones on the genome. In Drosophila and other insects, ecdysone coordinates developmental transitions, including wholesale transformation of the larva into the adult during metamorphosis. Like other hormones, ecdysone controls gene expression through a nuclear receptor, which functions as a ligand-dependent transcription factor. Although it is clear that ecdysone elicits distinct transcriptional responses within its different target tissues, the role of its receptor, EcR, in regulating target gene expression is incompletely understood. In particular, EcR initiates a cascade of transcription factor expression in response to ecdysone, making it unclear which ecdysone-responsive genes are direct EcR targets. Here, we use the larval-to-prepupal transition of developing wings to examine the role of EcR in gene regulation. Genome-wide DNA binding profiles reveal that EcR exhibits widespread binding across the genome, including at many canonical ecdysone response genes. However, the majority of its binding sites reside at genes with wing-specific functions. We also find that EcR binding is temporally dynamic, with thousands of binding sites changing over time. RNA-seq reveals that EcR acts as both a temporal gate to block precocious entry to the next developmental stage as well as a temporal trigger to promote the subsequent program. Finally, transgenic reporter analysis indicates that EcR regulates not only temporal changes in target enhancer activity but also spatial patterns. Together, these studies define EcR as a multipurpose, direct regulator of gene expression, greatly expanding its role in coordinating developmental transitions.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 691-691
Author(s):  
Joerg Schuettrumpf ◽  
Jianxiang Zou ◽  
Shin Jen Tai ◽  
Alexander Schlachterman ◽  
Kian Tian ◽  
...  

Abstract Coagulation proteases are crucial for hemostasis and have also been implicated in inflammatory responses, blood vessel formation, and tumor cell metastasis. Cellular responses triggered by proteases are mediated by protease-activated receptors (PAR). Adeno-associated virus (AAV)-2 vectors hold promise for the treatment of several diseases and were already tested in Phase I studies for hemophilia B following intramuscular or hepatic artery deliveries. Previously, we determined an unexpected inhibitory effect (60–70% downregulation) on AAV-2 and adenovirus mediated gene transfer by thrombin- or FXa inhibitors. These results were independent of mouse strain, transgene product, or vector promoter, and gene expression by vectors of alternate serotypes AAV-5 or -8, which do not share cellular receptors with AAV-2, were not affected by any drug. Here we present in vivo evidence of a novel role of coagulation proteases and PARs in modulating gene transfer by viral vectors. We tested AAV-2 gene transfer efficacy in (a) animal models for proteases deficiency [FX and FIX deficient animals], (b) PAR-1 or PAR-2 deficient mice, (c) and following in vivo activation of PARs. FX knockout mice with residual activity of only 1–3% of normal (n=9) were injected with AAV-2-human(h)FIX vector and compared to littermates with FX levels of 50% (n=4). FIX expression levels were 2-fold lower among FX-deficient mice compared to controls (p<0.03). The second model, FIX deficient mice, received AAV expressing α1-antitrypsin (AAT-1). Severe hemophilia B models due to large-gene deletion (n=5) or missense mutation (R180T) in the FIX gene (n=3, <1% FIX) were compared to littermate controls with normal FIX levels (n=6). The results showed that AAT-1 levels among hemophilia B mice were 2-fold lower than in controls (24 vs 48 ng/ml, p<0.05, respectively). Because PAR activation by thrombin enhances αVβ5 (co-receptor for AAV-2 and adenovirus)-dependent cellular function (JBC 276:10952) we hypothesized that PAR modulates AAV-2 gene transfer. Homozygous (−/−) or heterozygous deficient (+/−) PAR-1 (n=24) or PAR-2 (n=25) mice received AAV-2-hF.IX and were compared to littermate controls (+/+). FIX levels among PAR-1 controls (1.9 μg/ml) were comparable to levels obtained among heterozygotes but higher than in homozygotes (1.1 μg/ml, p<0.02). Similarly, PAR-2 deficient mice presented 2-fold lower FIX levels than controls (0.7 vs 1.3 μg/ml, p<0.02) whereas heterozygous mice presented intermediate levels. To further confirm the role of PARs in AAV-2 gene transfer we activated PARs prior to AAV-2 injection. C57BL/6 mice received specific peptide agonists at doses ranging from 10 to 60 μM/kg (n=4 per dose and per peptide) and were compared to controls receiving scramble peptide. FIX levels increased 1.5 to 5-fold in a dose-dependent manner and the activation of PAR-1 and -2 simultaneously was superior to single peptide. Gene copy monitoring revealed low vector uptake by livers of PAR knockout mice while activation of PARs increased uptake. In conclusion, these data demonstrated a novel in vivo role of coagulation proteases and PARs on viral vectors (AAV-2 and adenovirus)-mediated gene expression and provide an alternative target to modulate gene therapy strategies.


2015 ◽  
Vol 47 (4) ◽  
pp. 113-128 ◽  
Author(s):  
Theresa Casey ◽  
Osman V. Patel ◽  
Karen Plaut

Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats exposed to spaceflight from days 11 to 20 of gestation. To measure the impact of hypergravity on mammary, liver, and adipose transcriptomes we isolated RNA from tissues collected on P20 and lactation day 1 from rats exposed to hypergravity beginning on pregnancy day 9. Gene expression was measured with Affymetrix GeneChips. Microarray analysis of variance revealed alterations in gravity affected the expression of genes that regulate circadian clocks and activate mechanotransduction pathways. Changes in these systems may explain global gene expression changes in immune response, metabolism, and cell proliferation. Expression of genes that modify chromatin structure and methylation was affected, suggesting adaptation to gravity alterations may proceed through epigenetic change. Altered gravity experiments offer insights into the role of forces omnipresent on Earth that shape genomes in heritable ways. Our study is the first to analyze the impact of alterations in gravity on transcriptomes of pregnant and lactating mammals. Findings provide insight into systems that sense gravity and the way in which they affect phenotype, as well as the possibility of sustaining life beyond Earth's orbit.


Sign in / Sign up

Export Citation Format

Share Document