scholarly journals 3,4,5-Trihydroxycinnamic Acid Inhibits Lipopolysaccharide-Induced Inflammatory Response through the Activation of Nrf2 Pathway in BV2 Microglial Cells

2013 ◽  
Vol 21 (1) ◽  
pp. 60-65 ◽  
Author(s):  
Jae-Won Lee ◽  
Yong-Jun Choi ◽  
Jun-Ho Park ◽  
Jae-Young Sim ◽  
Yong-Soo Kwon ◽  
...  
2017 ◽  
Vol 42 (10) ◽  
pp. 2769-2776 ◽  
Author(s):  
Jianjiao Wang ◽  
Liang Chen ◽  
Zuobin Liang ◽  
Yang Li ◽  
Fei Yuan ◽  
...  

2021 ◽  
pp. 096032712110529
Author(s):  
Qunxian Li ◽  
Jing Wu ◽  
Lixian Huang ◽  
Bo Zhao ◽  
Qingbin Li

Ischemic stroke is a leading cause of death and long-term disability worldwide. The aim of this study is to explore the potential function of ephedrine in ischemic stroke and the underlying molecular mechanism. A middle cerebral artery occlusion (MCAO) rat model was established. The potential effects of ephedrine on MCAO rats and LPS-stimulated BV2 microglial cells were evaluated. Ephedrine reduced the infarct volume, cell apoptosis, brain water content, neurological score, and proinflammatory cytokines (TNF-α and IL-1β) production in MCAO rats. Ephedrine treatment also suppressed TNF-α and IL-1β production and NOD-like receptor pyrin domain 3 (NLRP3) inflammasome activation in BV2 microglial cells. The expression of NLRP3, caspase-1, and IL-1β was suppressed by ephedrine. Moreover, ephedrine treatment increased the phosphorylation of Akt and GSK3β and nuclear NRF2 levels in LPS-treated BV2 microglial cells. Meanwhile, LY294002 attenuated the inhibitory effects of ephedrine on NLRP3 inflammasome activation and TNF-α and IL-1β production. In addition, the level of pAkt was increased, while NLRP3, caspase-1, and IL-1β were decreased by ephedrine treatment in MCAO rats. In conclusion, ephedrine ameliorated cerebral ischemia injury via inhibiting NLRP3 inflammasome activation through the Akt/GSK3β/NRF2 pathway. Our results revealed a potential role of ephedrine in ischemic stroke treatment.


2019 ◽  
Vol 16 (3) ◽  
pp. 251-260 ◽  
Author(s):  
Elaine Wan Ling Chan ◽  
Emilia Tze Ying Yeo ◽  
Kelly Wang Ling Wong ◽  
Mun Ling See ◽  
Ka Yan Wong ◽  
...  

<P>Background: Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder that eventually leads to severe cognitive impairment. Although the exact etiologies of AD still remain elusive, increasing evidence suggests that neuroinflammation cascades mediated by microglial cells are associated with AD. Piper sarmentosum Roxb. (PS) is a medicinal plant reported to possess various biological properties, including anti-inflammatory, anti-psychotic and anti-oxidant activity. However, little is known about the anti-inflammatory activity of PS roots despite their traditional use to treat inflammatory- mediated ailments. Objective: This study aimed to evaluate the anti-inflammatory and neuroprotective properties of extracts obtained from the roots of PS against beta-amyloid (Aβ)-induced microglial toxicity associated with the production of pro-inflammatory mediators. Method: BV2 microglial cells were treated with hexane (RHXN), dichloromethane (RDCM), ethyl acetate (REA) and methanol (RMEOH) extracts of the roots of PS prior to activation by Aβ. The production and mRNA expression of pro-inflammatory mediators were evaluated by Griess reagent, ELISA kits and RT-qPCR respectively. The phosphorylation status of p38α MAPK was determined via western blot assay. BV2 conditioned medium was used to treat SH-SY5Y neuroblastoma cells and the neuroprotective effect was assessed using MTT assay. Results: PS root extracts, in particular RMEOH significantly attenuated the production and mRNA expression of IL-1β, IL-6 and TNF-α in Aβ-induced BV2 microglial cells. In addition, RHXN, REA and RMEOH extracts significantly reduced nitric oxide (NO) level and the inhibition of NO production was correlated with the total phenolic content of the extracts. Further mechanistic studies suggested that PS root extracts attenuated the production of cytokines by regulating the phosphorylation of p38α MAPK in microglia. Importantly, PS root extracts have protective effects against Aβ-induced indirect neurotoxicity either by inhibiting the production of NO, IL-1β, IL-6, and TNF-α in BV2 cells or by protecting SHSY5Y cells against these inflammatory mediators. Conclusions: These findings provided evidence that PS root extracts confer neuroprotection against Aβ- induced microglial toxicity associated with the production of pro-inflammatory mediators and may be a potential therapeutic agent for inflammation-related neurological conditions including Alzheimer’s disease (AD).</P>


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Xiaoxia Ye ◽  
Mingming Zhu ◽  
Xiaohang Che ◽  
Huiyang Wang ◽  
Xing-Jie Liang ◽  
...  

Abstract Background Microglial activation is a prominent feature of neuroinflammation, which is present in almost all neurodegenerative diseases. While an initial inflammatory response mediated by microglia is considered to be protective, excessive pro-inflammatory response of microglia contributes to the pathogenesis of neurodegeneration. Although autophagy is involved in the suppression of inflammation, its role and mechanism in microglia are unclear. Methods In the present study, we studied the mechanism by which lipopolysaccharide (LPS) affects microglial autophagy and the effects of autophagy on the production of pro-inflammatory factors in microglial cells by western blotting, immunocytochemistry, transfection, transmission electron microscopy (TEM), and real-time PCR. In a mouse model of neuroinflammation, generated by intraventricular injection of LPS (5 μg/animal), we induced autophagy by rapamycin injection and investigated the effects of enhanced autophagy on microglial activation by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. Results We found that autophagic flux was suppressed in LPS-stimulated N9 microglial cells, as evidenced by decreased expression of the autophagy marker LC3-II (lipidated form of MAP1LC3), as well as increased levels of the autophagy adaptor protein SQSTM1. LPS significantly decreased Vps34 expression in N9 microglial cells by activating the PI3KI/AKT/MTOR pathway without affecting the levels of lysosome-associated proteins and enzymes. More importantly, overexpression of Vps34 significantly enhanced the autophagic flux and decreased the accumulation of SQSTM1 in LPS-stimulated N9 microglial cells. Moreover, our results revealed that an LPS-induced reduction in the level of Vps34 prevented the maturation of omegasomes to phagophores. Furthermore, LPS-induced neuroinflammation was significantly ameliorated by treatment with the autophagy inducer rapamycin both in vitro and in vivo. Conclusions These data reveal that LPS-induced neuroinflammation in N9 microglial cells is associated with the inhibition of autophagic flux through the activation of the PI3KI/AKT/MTOR pathway, while enhanced microglial autophagy downregulates LPS-induced neuroinflammation. Thus, this study suggests that promoting the early stages of autophagy might be a potential therapeutic approach for neuroinflammation-associated diseases.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 109
Author(s):  
Pamela Maher

Although the hallmarks of Alzheimer’s disease (AD) are amyloid beta plaques and neurofibrillary tangles, there is growing evidence that neuroinflammation, mitochondrial dysfunction and oxidative stress play important roles in disease development and progression. A major risk factor for the development of AD is diabetes, which is also characterized by oxidative stress and mitochondrial dysfunction along with chronic, low-grade inflammation. Increasing evidence indicates that in immune cells, the induction of a pro-inflammatory phenotype is associated with a shift from oxidative phosphorylation (OXPHOS) to glycolysis. However, whether hyperglycemia also contributes to this shift is not clear. Several different approaches including culturing BV2 microglial cells in different carbon sources, using enzyme inhibitors and knocking down key pathway elements were used in conjunction with bacterial lipopolysaccharide (LPS) activation to address this question. The results indicate that while high glucose favors NO production, pro-inflammatory cytokine production is highest in the presence of carbon sources that drive OXPHOS. In addition, among the carbon sources that drive OXPHOS, glutamine is a very potent inducer of IL6 production. This effect is dampened in the presence of glucose. Together, these results may provide new prospects for the therapeutic manipulation of neuroinflammation in the context of diabetes and AD.


2017 ◽  
Vol 88 ◽  
pp. 878-884 ◽  
Author(s):  
Li-Long Pan ◽  
Peng Xu ◽  
Xiao-Ling Luo ◽  
Li-Jun Wang ◽  
Si-Yu Liu ◽  
...  

2015 ◽  
Vol 38 (12) ◽  
pp. 1831-1835 ◽  
Author(s):  
Md. Moniruzzaman ◽  
Gyeongjun Lee ◽  
Shambhunath Bose ◽  
Minho Choi ◽  
Jae-Kyung Jung ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document