Novel Die-to-Wafer Interconnect Process for 3D-IC Utilizing a Thermo-Decomposable Adhesive and Cu-Cu Thermo-Compression Bonding

2011 ◽  
Vol 2011 (DPC) ◽  
pp. 000781-000796
Author(s):  
Daniel N. Pascual

Die-to-wafer interconnect offers key advantages for 3D-IC including heterogeneous die population using devices from different process lines, and higher yield by incorporating only known-good die. Attaching the dies to a wafer, however, typically involves serial processing whereby each die is aligned and bonded one at a time. This can be prohibitively time consuming particularly when using a slow, high-temperature process such as Cu-Cu thermo-compression for each die in succession. Also, the high temperatures applied locally can adversely affect neighboring sites by oxidizing the Cu bonding surface if not protected in an oxygen-free environment. We have developed a novel die-to-wafer interconnect process that circumvents these problems using a die-tacking and global-bonding approach. Using a high-accuracy die placement tool, individual dies are aligned and tacked onto a wafer that is coated with a thermo-decomposable adhesive layer. The low-temperature tacking process avoids oxidation of the Cu bonding surfaces, minimizes thermal cycling, and increases throughput significantly. Once the wafer is fully populated, it is then processed in a closed-chamber wafer-bonding tool, which provides an oxygen-free environment. All of the dies are bonded in parallel using a high-temperature Cu-Cu bonding process to globally apply the required heat and force. Once the adhesive is heated past its critical decomposition temperature, it cleanly vaporizes away and allows the Cu-Cu bonding to proceed. We have successfully demonstrated this process on a 300mm platform using custom-designed test dies and wafers containing through-silicon via (TSV) chains and Kelvin test structures providing 4-point resistance measurements. Experimental results including TSV chain yield, electrical resistance, alignment accuracy, and cross-sectional analysis will be presented. A discussion will also be given on the potential cost savings and future technical challenges of this approach.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Kerry Mansell ◽  
Hishaam Bhimji ◽  
Dean Eurich ◽  
Holly Mansell

Abstract Background In 2014 and 2015, biosimilars for the drugs filgrastim, infliximab, and insulin glargine were approved for use in Canada. The introduction of biosimilars in Canada could provide significant cost savings for the Canadian healthcare system over originator biologic drugs, however it is known that the use of biosimilars varies widely across the world. The aim of this study was to estimate the use of biosimilars in Canada and potential cost-savings from their use. Methods We performed a retrospective analysis of Canadian drug purchases for filgrastim, infliximab, and insulin glargine from July 2016 to June 2018. This was a cross-sectional study and the time horizon was limited to the study period. As a result, no discounting of effects over time was included. Canadian drugstore and hospital purchases data, obtained from IQVIA™, were used to estimate the costs per unit and unit volume for biosimilars and originator biologic drugs within each province. Potential cost-savings were calculated as a product of the units of reference originator product purchased and the cost difference between the originator biologic and its corresponding biosimilar. Results The purchase of biosimilars varied by each province in Canada, ranging from a low of 0.1% to a high of 81.6% of purchases. In total, $1,048,663,876 Canadian dollars in savings could have been realized with 100% use of biosimilars over the originator products during this 2 year time period. The potential savings are highest in the province of Ontario ($349 million); however, even in smaller markets (PEI and Newfoundland), $28 million could have potentially been saved. Infliximab accounted for the vast majority of the potential cost-savings, whereas the purchases of the biosimilar filgrastim outpaced that of the originator drug in some provinces. In sensitivity analyses assuming only 80% of originator units would be eligible for use as a biosimilar, $838 million dollars in cost savings over this two-year time period would still have been realized. Conclusions The overall use of biosimilar drugs in Canada is low. Policy makers, healthcare providers, and patients need to be informed of potential savings by increased use of biosimilars, particularly in an increasingly costly healthcare system.


2017 ◽  
Vol 13 (7) ◽  
pp. e646-e652 ◽  
Author(s):  
Caitlyn Y.W. Leung ◽  
Matthew C. Cheung ◽  
Lauren F. Charbonneau ◽  
Anca Prica ◽  
Pamela Ng ◽  
...  

Purpose: Cancer drug wastage occurs when a parenteral drug within a fixed vial is not administered fully to a patient. This study investigated the extent of drug wastage, the financial impact on the hospital budget, and the cost savings associated with current mitigation strategies. Methods: We conducted a cross-sectional study in three University of Toronto–affiliated hospitals of various sizes. We recorded the actual amount of drug wasted over a 2-week period while using current mitigation strategies. Single-dose vial cancer drugs with the highest wastage potentials were identified (14 drugs). To calculate the hypothetical drug wastage with no mitigation strategies, we determined how many vials of drugs would be needed to fill a single prescription. Results: The total drug costs over the 2 weeks ranged from $50,257 to $716,983 in the three institutions. With existing mitigation strategies, the actual drug wastage over the 2 weeks ranged from $928 to $5,472, which was approximately 1% to 2% of the total drug costs. In the hypothetical model with no mitigation strategies implemented, the projected drug cost wastage would have been $11,232 to $149,131, which accounted for 16% to 18% of the total drug costs. As a result, the potential annual savings while using current mitigation strategies range from 15% to 17%. Conclusion: The financial impact of drug wastage is substantial. Mitigation strategies lead to substantial cost savings, with the opportunity to reinvest those savings. More research is needed to determine the appropriate methods to minimize risk to patients while using the cost-saving mitigation strategies.


BMJ Open ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. e019643 ◽  
Author(s):  
Richard Croker ◽  
Alex J Walker ◽  
Seb Bacon ◽  
Helen J Curtis ◽  
Lisa French ◽  
...  

BackgroundMinimising prescription costs while maintaining quality is a core element of delivering high-value healthcare. There are various strategies to achieve savings, but almost no research to date on determining the most effective approach. We describe a new method of identifying potential savings due to large national variations in drug cost, including variation in generic drug cost, and compare these with potential savings from an established method (generic prescribing).MethodsWe used English National Health Service (NHS) Digital prescribing data, from October 2015 to September 2016. Potential cost savings were calculated by determining the price per unit (eg, pill, millilitre) for each drug and dose within each general practice. This was compared against the same cost for the practice at the lowest cost decile to determine achievable savings. We compared these price-per-unit savings to the savings possible from generic switching and determined the chemicals with the highest savings nationally. A senior pharmacist manually assessed whether a random sample of savings were practically achievable.ResultsWe identified a theoretical maximum of £410 million of savings over 12 months. £273 million of these savings were for individual prescribing changes worth over £50 per practice per month (mean annual saving £33 433 per practice); this compares favourably with generic switching, where only £35 million of achievable savings were identified. The biggest savings nationally were on glucose blood testing reagents (£12 million), fluticasone propionate (£9 million) and venlafaxine (£8 million). Approximately half of all savings were deemed practically achievable.DiscussionWe have developed a new method to identify and enable large potential cost savings within NHS community prescribing. Given the current pressures on the NHS, it is vital that these potential savings are realised. Our tool enabling doctors to achieve these savings is now launched in pilot form at OpenPrescribing.net. However, savings could potentially be achieved more simply through national policy change.


2019 ◽  
Vol 09 (01) ◽  
pp. e76-e83 ◽  
Author(s):  
Eileen Walsh ◽  
Sherian Li ◽  
Libby Black ◽  
Michael Kuzniewicz

Objective This study was aimed to compare health care costs and utilization at birth through 1 year, between preterm and term infants, by week of gestation. Methods A cross-sectional study of infants born at ≥ 23 weeks of gestational age (GA) at Kaiser Permanente Northern California facilities between 2000 and 2011, using outcomes data from an internal neonatal registry and cost estimates from an internal cost management database. Adjusted models yielded estimates for cost differences for each GA group. Results Infants born at 25 to 37 weeks incur significantly higher birth hospitalization costs and experience significantly more health care utilization during the initial year of life, increasing progressively for each decreasing week of gestation, when compared with term infants. Among all very preterm infants (≤ 32 weeks), each 1-week decrease in GA is associated with incrementally higher rates of mortality and major morbidities. Conclusion We provide estimates of potential cost savings that could be attributable to interventions that delay or prevent preterm delivery. Cost differences were most extreme at the lower range of gestation (≤ 30 weeks); however, infants born moderately preterm (31–36 weeks) also contribute substantially to the burden, as they represent a higher proportion of total births.


Author(s):  
Ozayr H. Mahomed ◽  
Ruth Lekalakala ◽  
Shaidah Asmall ◽  
Naseem Cassim

Background: Diagnostic health laboratory services are regarded as an integral part of the national health infrastructure across all countries. Clinical laboratory tests contribute substantially to health system goals of increasing quality of care and improving patient outcomes.Objectives: This study aimed to analyse current laboratory expenditures at the primary healthcare (PHC) level in South Africa as processed by the National Health Laboratory Service and to determine the potential cost savings of introducing laboratory demand management.Methods: A retrospective cross-sectional analysis of laboratory expenditures for the 2013/2014 financial year across 11 pilot National Health Insurance health districts was conducted. Laboratory expenditure tariff codes were cross-tabulated to the PHC essential laboratory tests list (ELL) to determine inappropriate testing. Data were analysed using a Microsoft Access database and Excel software.Results: Approximately R35 million South African Rand (10%) of the estimated R339 million in expenditures was for tests that were not listed within the ELL. Approximately 47% of expenditure was for laboratory tests that were indicated in the algorithmic management of patients on antiretroviral treatment. The other main cost drivers for non-ELL testing included full blood count and urea, as well as electrolyte profiles usually requested to support management of patients on antiretroviral treatment.Conclusions: Considerable annual savings of up to 10% in laboratory expenditure are possible at the PHC level by implementing laboratory demand management. In addition, to achieve these savings, a standardised PHC laboratory request form and some form of electronic gatekeeping system that must be supported by an educational component should be implemented.


Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.


Author(s):  
H. Kung ◽  
T. R. Jervis ◽  
J.-P. Hirvonen ◽  
M. Nastasi ◽  
T. E. Mitchell ◽  
...  

MoSi2 is a potential matrix material for high temperature structural composites due to its high melting temperature and good oxidation resistance at elevated temperatures. The two major drawbacksfor structural applications are inadequate high temperature strength and poor low temperature ductility. The search for appropriate composite additions has been the focus of extensive investigations in recent years. The addition of SiC in a nanolayered configuration was shown to exhibit superior oxidation resistance and significant hardness increase through annealing at 500°C. One potential application of MoSi2- SiC multilayers is for high temperature coatings, where structural stability ofthe layering is of major concern. In this study, we have systematically investigated both the evolution of phases and the stability of layers by varying the heat treating conditions.Alternating layers of MoSi2 and SiC were synthesized by DC-magnetron and rf-diode sputtering respectively. Cross-sectional transmission electron microscopy (XTEM) was used to examine three distinct reactions in the specimens when exposed to different annealing conditions: crystallization and phase transformation of MoSi2, crystallization of SiC, and spheroidization of the layer structures.


Author(s):  
N. Rozhanski ◽  
A. Barg

Amorphous Ni-Nb alloys are of potential interest as diffusion barriers for high temperature metallization for VLSI. In the present work amorphous Ni-Nb films were sputter deposited on Si(100) and their interaction with a substrate was studied in the temperature range (200-700)°C. The crystallization of films was observed on the plan-view specimens heated in-situ in Philips-400ST microscope. Cross-sectional objects were prepared to study the structure of interfaces.The crystallization temperature of Ni5 0 Ni5 0 and Ni8 0 Nb2 0 films was found to be equal to 675°C and 525°C correspondingly. The crystallization of Ni5 0 Ni5 0 films is followed by the formation of Ni6Nb7 and Ni3Nb nucleus. Ni8 0Nb2 0 films crystallise with the formation of Ni and Ni3Nb crystals. No interaction of both films with Si substrate was observed on plan-view specimens up to 700°C, that is due to the barrier action of the native SiO2 layer.


Author(s):  
M. Hamzah

Classical Oil Country Tubular Goods (OCTG) procurement approach has been practiced in the indus-try with the typical process of setting a quantity level of tubulars ahead of the drilling project, includ-ing contingencies, and delivery to a storage location close to the drilling site. The total cost of owner-ship for a drilling campaign can be reduced in the range of 10-30% related to tubulars across the en-tire supply chain. In recent decades, the strategy of OCTG supply has seen an improvement resulting in significant cost savings by employing the integrated tubular supply chain management. Such method integrates the demand and supply planning of OCTG of several wells in a drilling project and synergize the infor-mation between the pipes manufacturer and drilling operators to optimize the deliveries, minimizing inventory levels and safety stocks. While the capital cost of carrying the inventory of OCTG can be reduced by avoiding the procurement of substantial volume upfront for the entire project, several hidden costs by carrying this inventory can also be minimized. These include storage costs, maintenance costs, and costs associated to stock obsolescence. Digital technologies also simplify the tasks related to the traceability of the tubulars since the release of the pipes from the manufacturing facility to the rig floor. Health, Safety, and Environmental (HSE) risks associated to pipe movements on the rig can be minimized. Pipe-by-pipe traceability provides pipes’ history and their properties on demand. Digitalization of the process has proven to simplify back end administrative tasks. The paper reviews the OCTG supply methods and lays out tangible improvement factors by employ-ing an alternative scheme as discussed in the paper. It also provides an insight on potential cost savings based on the observed and calculated experiences from several operations in the Asia Pacific region.


1988 ◽  
Vol 20 (4-5) ◽  
pp. 101-108 ◽  
Author(s):  
R. C. Clifft ◽  
M. T. Garrett

Now that oxygen production facilities can be controlled to match the requirements of the dissolution system, improved oxygen dissolution control can result in significant cost savings for oxygen activated sludge plants. This paper examines the potential cost savings of the vacuum exhaust control (VEC) strategy for the City of Houston, Texas 69th Street Treatment Complex. The VEC strategy involves operating a closed-tank reactor slightly below atmospheric pressure and using an exhaust apparatus to remove gas from the last stage of the reactor. Computer simulations for one carbonaceous reactor at the 69th Street Complex are presented for the VEC and conventional control strategies. At 80% of design loading the VEC strategy was found to provide an oxygen utilization efficiency of 94.9% as compared to 77.0% for the conventional control method. At design capacity the oxygen utilization efficiency for VEC and conventional control was found to be 92.3% and 79.5%, respectively. Based on the expected turn-down capability of Houston's oxygen production faciilities, the simulations indicate that the VEC strategy will more than double the possible cost savings of the conventional control method.


Sign in / Sign up

Export Citation Format

Share Document