Comparison between Single & Multi Beam Laser Grooving of Low-K layers

2012 ◽  
Vol 2012 (1) ◽  
pp. 000433-000439 ◽  
Author(s):  
Jeroen van Borkulo ◽  
Rene Hendriks ◽  
Peter Dijkstra

The traditional blade dicing technology has gone through an impressive evolution keeping up with quality, cost and miniaturization requirements that the semiconductor technology roadmaps introduced and specified. However, since wafer technologies have dropped below 90nm node and low k materials were introduced it became clear that blade dicing evolution came to an end and expensive hybrid solutions such as combined laser grooving processes and blade dicing technologies were required to achieve the desired product reliability. Similar situations have been seen with the ongoing trend to thinner wafer that are needed for miniaturization, 3D packaging and IC performance improvements. To achieve sufficient mechanical strength, complex dicing technologies and sequences have been introduced which do not respond to the requirements for current and near future technologies. This paper will discuss the low-k grooving process by laser pulses for IC wafers. The low-K laser grooving technology allows semiconductor manufacturers to execute the technology roadmap and continue to comply with Moore's law in an efficient manner. In specific this paper will elaborate on the comparison study made between the single beam and multi beam low-K grooving process. Together with a large IDM customer a comparison has been done to determine the results on quality, Heat Affected Zone (HAZ), productivity and yield.

2015 ◽  
Vol 2015 (DPC) ◽  
pp. 001446-001474
Author(s):  
Jeroen van Borkulo ◽  
Richard van der Stam ◽  
Guido Knippels

The ongoing trend to thinner wafers which are needed for continuous miniaturization, 3D packaging and IC performance, inevitably means that sole blade dicing evolution is coming to an end. Over the last years several technologies to handle the separation process of thin Si wafer dicing have been evaluated (DBG, Stealth, Plasma, etc). Although they are capable for certain applications to meet the process specifications, they achieve this at expense of flexibility, productivity and process costs. ALSI, the inventor of multi beam dicing for semiconductor materials, has developed a technology using a multi beam laser concept which allows to dice through thin Si IC wafers while achieving a die strength equal or higher than achieved with blade dicing. In this single step process a multi beam laser configuration allows to remove the (ultra) low-K and metal top structures, dice through the Si substrate and recover the die strength (>450MPa for a 70um Si wafer). This technology allows the semiconductor industry to continue with the development of advanced node wafer technology utilizing (ultra) low-K and thick metal structures while having a separation technology that can cope with all these process steps. The presentation will address how the multi beam laser dicing process is an enabling technology and the first process in the world that can meet the die strength criteria without the need of additional process steps which increase the cost and reduce the flexibility and yield of the process. Multi beam laser dicing allows semiconductor manufacturers to execute their technology roadmap in a cost efficient manner. This presentation will address in depth, the challenges and issue's that semiconductor manufacturers are facing with respect to the dicing of thin (ultra) low-K IC wafers. We will present the die strength and quality that has been achieved using the multi beam dicing technology and compare this to other separation technologies. We will disclose how a multi beam process will play a dominant role in achieving an extremely small Heat Affected Zone combined with a significantly higher productivity. It will be demonstrated how a unique combination and optimization of multiple beams, pulse duration, and low pulse energy, can meet the challenging requirements set by the industry. In addition dicing results and achieved productivities will be presented.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Anne E. Harman-Ware ◽  
Samuel Sparks ◽  
Bennett Addison ◽  
Udaya C. Kalluri

AbstractSuberin is a hydrophobic biopolymer of significance in the production of biomass-derived materials and in biogeochemical cycling in terrestrial ecosystems. Here, we describe suberin structure and biosynthesis, and its importance in biological (i.e., plant bark and roots), ecological (soil organic carbon) and economic (biomass conversion to bioproducts) contexts. Furthermore, we highlight the genomics and analytical approaches currently available and explore opportunities for future technologies to study suberin in quantitative and/or high-throughput platforms in bioenergy crops. A greater understanding of suberin structure and production in lignocellulosic biomass can be leveraged to improve representation in life cycle analysis and techno-economic analysis models and enable performance improvements in plant biosystems as well as informed crop system management to achieve economic and environmental co-benefits.


2021 ◽  
Author(s):  
Joon Ho Cha ◽  
Hae Woon Choi

Abstract Laser technology has many advantages in welding for the manufacture of EV battery packs. Aluminum (Al) and copper (Cu) are welded using a dual laser beam, suggesting the optimum power distribution for the core and ring beams. Due to the very high reflectance of Cu and Al exposed to near-infrared lasers, the material absorbs a very small amount of energy. Compared to single beam laser welding, dual beam welding has significantly improved surface quality by controlling surface solidification. The study focused on the quality of weld surface beads, weld properties and tensile strength by varying the output ratio of the core beam to the ring beam. Optimal conditions of Al6061 were a 700 W core beam, a 500 W ring beam and 200 mm/s of weld speed. For the C1020P, the optimum conditions were a center beam of 2500 W, a ring beam of 3000 W and a welding speed of 200 mm/s. In laser lap welding of Al-Al and Al-Cu, the bead width and the interfacial bead width of the joint increased as the output increased. The penetration depth did not change significantly, but small pores were formed at the interface of the junction. Tensile tests were performed to demonstrate the reliability of the weld zone, and computer simulations provided analysis of the heat distribution for optimal heat input conditions.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 001743-001759
Author(s):  
Andy Hooper ◽  
Daragh Finn

3D packaging technologies such as FLASH rely on die-to-die stacking of ultra-thin silicon devices with individual die thicknesses below 100 um. Because ultra-thin silicon wafers are very fragile, mechanical saw dicing of sub 100 um thick wafers tends to be more challenging, requiring slower processing and reduced throughput and/or yields. These challenges make full cut laser dicing an attractive solution. This presentation provides an investigation for machining of 50 um thick silicon wafers using a Gaussian-shaped, nanosecond pulsewidth, 355 nm UV laser. A range of machining speeds and laser fluences are compared, from single laser pulses to highly overlapped slow-velocity machining. 3D Laser Scanning Microscope and FIB/TEM cross sections are employed to characterize the state and depth of heating damage into the Si material. Implications for laser machining rates and die break strength are investigated for full cut laser dicing.


Author(s):  
Jun Zhou ◽  
Hai-Lung Tsai

Dual-beam laser welding has become an emerging joining technique. Studies have demonstrated that it can provide benefits over conventional single-beam laser welding, such as increasing keyhole stability, slowing down cooling rate and delaying the humping onset to a higher welding speed. It is also reported to be able to improve weld quality significantly. However, due to its complexity the development of this promising technique has been limited to the trial-and-error procedure. In this study, mathematical models are developed to investigate the heat transfer, melt flow, and solidification process in three-dimensional dual-beam laser keyhole welding. Effects of key parameters, such as laser-beam configuration on melt flow, weld shape, and keyhole dynamics are studied. Some experimentally observed phenomena, such as the changes of the weld pool shape from oval to circle and from circle to oval during the welding process are analyzed in current study.


2013 ◽  
Vol 592-593 ◽  
pp. 563-568
Author(s):  
Christoph Sander ◽  
Martin Gall ◽  
Kong Boon Yeap ◽  
Ehrenfried Zschech

Managing the emerging internal mechanical stress in chips particularly if they are 3D-tscked is a key task to maintain performance and reliability of microelectronic products. Hence, a strong need of a physics-based simulation methodology/flow emerges. This physics-based simulation, however, requires materials parameters with high accuracy. A full-chip analysis can then be performed, balancing the need for local resolution and computing time. Therefore, effective composite-type materials data for several regions of interest are needed. Advanced techniques to measure FEA-and design-relevant properties such as local and effective Youngs modulus and effective CTE values were developed and described in this paper. These data show a clear orientation dependence, caused by the chip design.


2019 ◽  
Vol 60 ◽  
pp. 154-161
Author(s):  
Raad Sh. Alnayli ◽  
Hanan Alkazaali

In this work we study the influence of the laser pulses silver nanoparticles productivity during laser ablation of silver immersed in liquid. Ag nanoparticles were synthesized by pulsed laser ablation of Ag targets in ethanol using the (1064 nm, Q-switched, Nd:YAG) laser with energy of 140 mJ per pulse. UV-Visible absorption spectra were used for the characterization and comparison of products. The non-linear refractive index and absorption coefficient of silver nanoparticles were investigated using a single beam z-scan technique; the excitation source was a continuous wave (CW) of 650 nm diode laser with a beam power of 50 mW. All investigated samples showed negative-induced non-linear refractive indices.


2006 ◽  
Vol 960 ◽  
Author(s):  
Christopher Favazza ◽  
Justin Trice ◽  
Radhakrishna Sureshkumar ◽  
Ramki Kalyanaraman

ABSTRACTDewetting instabilities in nanoscopic Co films, induced by uniform multiple ns pulse laser irradiation, leads to a system of nanoparticles with robust spatial order. On the other hand, irradiation by non-uniform laser intensity, such as with a two beam laser interference pattern generates a quasi two-dimensional pattern of nanoparticles possessing long range order (LRO) and short range order (SRO). Here we discuss the various instabilities that are responsible for the production of these dissimilar patterns and length scales on the basis of their time scales. For the case of single beam irradiation, the film progresses in a manner that can be attributed to classical spinodal dewetting. Pattern formation from interference irradiation is the result of time scale-based selection of competing processes, which can be chosen by controlling the film thickness. This approach promises a simple and cost-effective means to self-assemble various nanostructures.


1993 ◽  
Vol 7 (2) ◽  
pp. 111-122
Author(s):  
M.S. Chen ◽  
Byron W. Jones

Sign in / Sign up

Export Citation Format

Share Document