Development of Laser and Photodefinable Toughened Benzocyclobutene Dielectric Materials for 3D-TSV Integration

2013 ◽  
Vol 2013 (1) ◽  
pp. 000067-000071
Author(s):  
Zidong Wang ◽  
Michael Gallagher ◽  
Kevin Wang ◽  
Elissei Iagodkine ◽  
Mark Oliver ◽  
...  

3D IC integration based on TSV technology has been recognized as a key enabler for next generation of electronic devices with reduced size factor and improved performances. The adoption of 3D-TSV technology also requires the development of innovative interconnect solutions that reduces the size of signal routing and therefore imposes new demands on dielectric materials used to isolate the copper interconnects. Benzocyclobutene polymers (Dow's CYCLOTENE™ Advanced Electronic Resins) have been used to isolate copper interconnects in packaging applications for more than 20 years, due to a number of good attributes of the BCB polymer including low copper drift rate, low dielectric constant and low loss, low moisture absorption and proven reliability. However, the low fracture toughness and low elongation of BCB polymer has limited its use in stress buffer applications due to solder bump failure. Here we report the development of new laser and photodefinable toughened benzocyclobutene (BCB) dielectric materials that have following improved properties and benefits over commercial materials including: 1) Higher elongation to break at 25%, 2) Higher fracture toughness, 3) Improved lithographic performance, < 8μm minimal size feature, 4) Better stability, no change in Eo after 30 days at room temperature. The patterning and integration of these toughened benzocyclobutene materials and the processing conditions are also discussed. We believe this toughened BCB material will find wide applications as a stress buffer layer in 3-D IC.

2009 ◽  
Vol 23 (17) ◽  
pp. 3649-3654 ◽  
Author(s):  
MOHAN V. JACOB

The microwave properties of some of the low cost materials which can be used in high frequency applications with low transmission losses are investigated in this paper. One of the most accurate microwave characterization techniques, Split Post Dielectric Resonator technique (SPDR) is used for the experimental investigation. The dielectric constants of the 3 materials scrutinized at room temperature and at 10K are 3.65, 2.42, 3.61 and 3.58, 2.48, 3.59 respectively. The corresponding loss tangent values are 0.00370, 0.0015, 0.0042 and 0.0025, 0.0009, 0.0025. The high frequency transmission losses are comparable with many of the conventional materials used in low temperature electronics and hence these materials could be implemented in such applications.


Author(s):  
D. B. Leong ◽  
M. A. Helfand ◽  
R. L. McConville ◽  
F. W. Mercer

Polymer to metal relationships for applications from coating finishes to electronic devices require interfacial synergy. Polymer application requirements range in temperature, thermal stability, thermal expansion, moisture absorption, oxidative stability, etc. and choice of metal and deposition technique must take into account these characteristics. While the ability to deposit metal in a controllable fashion is well established the present study focuses on what takes place at the polymer metal interface. Polymer/metal interactions on polyimide systems have been studied in detail for the past decade by a variety of analytical techniques. For the first time this is being investigated in the FPAE polymers combining EM study for structural analysis and XPS for chemical analysis. Fluorinated poly (arly ethers) FPAE, are a newly developed class of polymeric dielectric materials for electronic packaging. These new materials exhibit excellent oxidative stability, low moisture absorption and low dielectric constant. While these parameters are critical for electronic device performance and longevity, device performance is also highly dependent on metallization of the polymer.


2013 ◽  
Vol 1499 ◽  
Author(s):  
Shan Wu ◽  
Quinn Burlingame ◽  
Weiping Li ◽  
Minren Lin ◽  
Yue Zhou ◽  
...  

ABSTRACTDielectric capacitors for energy storage are of great importance in modern electronics and electric systems. It is a challenge to realize the high energy density while maintain the low dielectric loss. We investigated an ultra high breakdown electric field of 1.1 GV/m, which is approaching the intrinsic breakdown, in aromatic polythiourea, a new dielectric material that serves a high energy density of 23 J/cm3 as well as high charge-discharge efficiency above 90%. The molecular structure and film surface morphology were also studied, it was proved a polar amorphous phase and glass state material could significantly suppress the high field conduction to several orders smaller compared with regular polymer dielectric materials, which are usually semi-crystalline and in rubber phase.


2002 ◽  
Vol 5 (6) ◽  
pp. 587-590 ◽  
Author(s):  
Mieko TAKEI-TAMURA ◽  
Yukihiro KATO ◽  
Masami OKUO ◽  
Tomiho YAMADA ◽  
Toshiaki TAKAOKA ◽  
...  

2002 ◽  
Vol 716 ◽  
Author(s):  
Alok Nandini ◽  
U. Roy ◽  
A. Mallikarjunan ◽  
A. Kumar ◽  
J. Fortin ◽  
...  

AbstractThin films of low dielectric constant (κ) materials such as Xerogel (ĸ=1.76) and SilkTM (ĸ=2.65) were implanted with argon, neon, nitrogen, carbon and helium with 2 x 1015 cm -2 and 1 x 1016 cm -2 dose at energies varying from 50 to 150 keV at room temperature. In this work we discuss the improvement of hardness as well as elasticity of low ĸ dielectric materials by ion implantation. Ultrasonic Force Microscopy (UFM) [6] and Nano indentation technique [5] have been used for qualitative and quantitative measurements respectively. The hardness increased with increasing ion energy and dose of implantation. For a given energy and dose, the hardness improvement varied with ion species. Dramatic improvement of hardness is seen for multi-dose implantation. Among all the implanted ion species (Helium, Carbon, Nitrogen, Neon and Argon), Argon implantation resulted in 5x hardness increase in Xerogel films, sacrificing only a slight increase (∼ 15%) in dielectric constant.


Author(s):  
M.P. Wilson ◽  
R.A. Fouracre ◽  
M.J. Given ◽  
S.J. MacGregor ◽  
I.V. Timoshkin ◽  
...  

1996 ◽  
Author(s):  
Chriss A. Jones ◽  
John H. Grosvenor ◽  
Yehuda Kantor

2018 ◽  
Vol 8 (12) ◽  
pp. 2485 ◽  
Author(s):  
Congju Li ◽  
Ran Cao ◽  
Xiuling Zhang

Wearable electronics are believed to be the future of the next-generation electric devices. However, the comfort of current wearable devices is greatly limited due to the use of airtight materials, which may even lead to inflammation of the skin. Therefore, breathable, skin-friendly materials, are highly desired for wearable devices. Here, the recent progress of the breathable materials used to fabricate skin-friendly electronics is reviewed by taking triboelectric effect-based wearable electronics as a typical example. Fibers, yarns, textiles, and nanofiber membranes are the most popular dielectric materials that serve as frictional materials. Metal mesh, silver yarn, and conductive networks made up of nanomaterial are preferred as air-permissive electrodes. The breathable materials for skin-friendly wearable electronics summarized in this review provide valuable references for future fabrication of humanized wearable devices and hold great significance for the practical application of wearable devices.


Sign in / Sign up

Export Citation Format

Share Document