scholarly journals Cell Biology in space: basic research and potential applications

Author(s):  
A. Cogoli
2021 ◽  
Vol 18 (3) ◽  
pp. 501-533
Author(s):  
Kui Wan ◽  
Xuelian Gou ◽  
Zhiguang Guo

AbstractWith the explosive growth of the world’s population and the rapid increase in industrial water consumption, the world’s water supply has fallen into crisis. The shortage of fresh water resources has become a global problem, especially in arid regions. In nature, many organisms can collect water from foggy water under harsh conditions, which provides us with inspiration for the development of new functional fog harvesting materials. A large number of bionic special wettable synthetic surfaces are synthesized for water mist collection. In this review, we introduce some water collection phenomena in nature, outline the basic theories of biological water harvesting, and summarize six mechanisms of biological water collection: increased surface wettability, increased water transmission area, long-distance water delivery, water accumulation and storage, condensation promotion, and gravity-driven. Then, the water collection mechanisms of three typical organisms and their synthesis are discussed. And their function, water collection efficiency, new developments in their biomimetic materials are narrated, which are cactus, spider and desert beetles. The study of multiple bionics was inspired by the discovery of Nepenthes’ moist and smooth peristome. The excellent characteristics of a variety of biological water collection structures, combined with each other, are far superior to other single synthetic surfaces. Furthermore, the main problems in the preparation and application of biomimetic fog harvesting materials and the future development trend of materials fog harvesting are prospected.


Parasite ◽  
2020 ◽  
Vol 27 ◽  
pp. 49 ◽  
Author(s):  
André G. Buret ◽  
Simone M. Cacciò ◽  
Loïc Favennec ◽  
Staffan Svärd

Although Giardia duodenalis is recognized as one of the leading causes of parasitic human diarrhea in the world, knowledge of the mechanisms of infection is limited, as the pathophysiological consequences of infection remain incompletely elucidated. Similarly, the reason for and consequences of the very specific genome-organization in this parasite with 2 active nuclei is only partially known. Consistent with its tradition, the 7th International Giardia and Cryptosporidium Conference (IGCC 2019) was held from June 23 to 26, 2019, at the Faculty of Medicine and Pharmacy of the University of Rouen-Normandie, France, to discuss current research perspectives in the field. This renowned event brought together an international delegation of researchers to present and debate recent advances and identify the main research themes and knowledge gaps. The program for this interdisciplinary conference included all aspects of host-parasite relationships, from basic research to applications in human and veterinary medicine, as well as the environmental issues raised by water-borne parasites and their epidemiological consequences. With regard to Giardia and giardiasis, the main areas of research for which new findings and the most impressive communications were presented and discussed included: parasite ecology and epidemiology of giardiasis, Giardia-host interactions, and cell biology of Giardia, genomes and genomic evolution. The high-quality presentations discussed at the Conference noted breakthroughs and identified new opportunities that will inspire researchers and funding agencies to stimulate future research in a “one health” approach to improve basic knowledge and clinical and public health management of zoonotic giardiasis.


Parasitology ◽  
2006 ◽  
Vol 133 (3) ◽  
pp. 261-278 ◽  
Author(s):  
A. HEMPHILL ◽  
N. VONLAUFEN ◽  
A. NAGULESWARAN

Neospora caninumis an apicomplexan parasite that is closely related toToxoplasma gondii, the causative agent of toxoplasmosis in humans and domestic animals. However, in contrast toT. gondii, N. caninumrepresents a major cause of abortion in cattle, pointing towards distinct differences in the biology of these two species. There are 3 distinct key features that represent potential targets for prevention of infection or intervention against disease caused byN. caninum. Firstly, tachyzoites are capable of infecting a large variety of host cellsin vitroandin vivo. Secondly, the parasite exploits its ability to respond to alterations in living conditions by converting into another stage (tachyzoite-to-bradyzoite orvice versa). Thirdly, by analogy withT. gondii, this parasite has evolved mechanisms that modulate its host cells according to its own requirements, and these must, especially in the case of the bradyzoite stage, involve mechanisms that ensure long-term survival of not only the parasite but also of the host cell. In order to elucidate the molecular and cellular bases of these important features ofN. caninum, cell culture-based approaches and laboratory animal models are being exploited. In this review, we will summarize the current achievements related to host cell and parasite cell biology, and will discuss potential applications for prevention of infection and/or disease by reviewing corresponding work performed in murine laboratory infection models and in cattle.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 1991 ◽  
Author(s):  
Roberta Cagliani ◽  
Francesca Gatto ◽  
Giuseppe Bardi

Nanomaterials are now well-established components of many sectors of science and technology. Their sizes, structures, and chemical properties allow for the exploration of a vast range of potential applications and novel approaches in basic research. Biomedical applications, such as drug or gene delivery, often require the release of nanoparticles into the bloodstream, which is populated by blood cells and a plethora of small peptides, proteins, sugars, lipids, and complexes of all these molecules. Generally, in biological fluids, a nanoparticle’s surface is covered by different biomolecules, which regulate the interactions of nanoparticles with tissues and, eventually, their fate. The adsorption of molecules onto the nanomaterial is described as “corona” formation. Every blood particulate component can contribute to the creation of the corona, although small proteins represent the majority of the adsorbed chemical moieties. The precise rules of surface-protein adsorption remain unknown, although the surface charge and topography of the nanoparticle seem to discriminate the different coronas. We will describe examples of adsorption of specific biomolecules onto nanoparticles as one of the methods for natural surface functionalization, and highlight advantages and limitations. Our critical review of these topics may help to design appropriate nanomaterials for specific drug delivery.


2015 ◽  
Vol 209 (3) ◽  
pp. 323-325
Author(s):  
Satyajit Mayor

With the increase in scientific activity globally, the geographical focus of basic research is shifting away from the West. At the same time, multidisciplinary approaches are uncovering new layers in our understanding of how cells work. How will these trends affect cell biology in the near future?


1992 ◽  
Vol 36 ◽  
pp. 439-449 ◽  
Author(s):  
Radko A. Kühnel ◽  
Sjerry J. van der Gaast

AbstractHumidity sensitive mineral phases change their structure when humidity varies resulting in X-ray pattern changes in intensity, position, and shape of lines. These structural changes in hydrous minerals are induced by dehydration and rehydration, which can lead to phase transformations or to steady depletion which may result in a total structure collapse. By means of X-ray diffraction with a special attachment, such reactions can be followed. The controlled relative humidity is provided in situ, in a closed cell, by a flow of moistened helium gas which is flushed through the cell during the XRD analysis. Humidity diffractometry allows studies of reaction rates of dehydration-rehydration reactions and their reversibilities, as well as effects of additives and impurities on these reactions. Potential applications in basic research and in industry are demonstrated using montmorilionite, ettringites, sodium carbonates and calcium sulfates.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3117 ◽  
Author(s):  
Vilelmini Kalampratsidou ◽  
Elizabeth B. Torres

Dyadic interactions are ubiquitous in our lives, yet they are highly challenging to study. Many subtle aspects of coupled bodily dynamics continuously unfolding during such exchanges have not been empirically parameterized. As such, we have no formal statistical methods to describe the spontaneously self-emerging coordinating synergies within each actor’s body and across the dyad. Such cohesive motion patterns self-emerge and dissolve largely beneath the awareness of the actors and the observers. Consequently, hand coding methods may miss latent aspects of the phenomena. The present paper addresses this gap and provides new methods to quantify the moment-by-moment evolution of self-emerging cohesiveness during highly complex ballet routines. We use weighted directed graphs to represent the dyads as dynamically coupled networks unfolding in real-time, with activities captured by a grid of wearable sensors distributed across the dancers’ bodies. We introduce new visualization tools, signal parameterizations, and a statistical platform that integrates connectivity metrics with stochastic analyses to automatically detect coordination patterns and self-emerging cohesive coupling as they unfold in real-time. Potential applications of these new techniques are discussed in the context of personalized medicine, basic research, and the performing arts.


1990 ◽  
Vol 189 ◽  
Author(s):  
Leonard Dauerman ◽  
Gabriele Windgasse ◽  
Huiping Gu ◽  
Nagui Ibrahim ◽  
El-Hamy Sedhom

ABSTRACTThis laboratory is characterizing the mechanisms underlying the potential applications of microwave treatment to the remediation of hazardous waste streams under an Environmental Protection Agency Basic Research grant. Applications that have been investigated encompass the following processes(1-14): volatilization of organics from substrates; ‘chemical fixation’ of non-volatile organics in substrates; ‘chemical fixation’ of heavy metals in substrates; kinetics of decomposition of organics in the gas phase using fixed and ‘lossy’ beds. To-date the work has been carried out on a bench-scale level. Pilot plant studies are now beginning. This paper will focus on studies carried out on non-volatile organics and heavy metals, specifically, chromium.


Sign in / Sign up

Export Citation Format

Share Document