scholarly journals Fabrication and intracellular delivery of siRNA/carbonate apatite nano-composites for effective knockdown of cyclin B1 gene

2011 ◽  
Vol 1 (1) ◽  
pp. 8 ◽  
Author(s):  
Anthony Stanislaus ◽  
Sharif Hossain ◽  
Ming Jang Chua ◽  
Anil Philip Kunnath ◽  
Quek Chia Wen ◽  
...  

<p>Gene therapy through intracellular delivery of a functional gene or a gene-silencing element is a promising approach to properly treat critical human diseases like cancer. The ability of synthetically designed small interfering RNA (siRNA) to effectively silence genes<em> </em>at post-transcriptional level has made them attractive options in targeted therapeutics. However, naked siRNA being unable to passively diffuse through cellular membranes, poses difficulty in fully exploiting the potential of the technology. pH-sensitive carbonate apatite has been developed as an efficient tool to deliver siRNA into the mammalian cells by virtue of its high affinity interaction with the siRNA and effective cellular endocytosis. Moreover, internalized siRNA has been found to escape from the endosomes in a time-dependent manner and effectively silenced reporter gene expression. Knockdown of cyclin B1 gene with only 10 nM of siRNA delivered by carbonate apatite has resulted in significant death of cervical cancer cells. Moreover, delivery of siRNA against cyclin B1 gene has led to the sensitization of the cancer cells to both cisplatin and doxorubicin at a particulat drug concentration. Thus, the new method of siRNA delivery is highly promising for pre-clinical and clinical cancer therapy using siRNA therapeutics.</p>

2013 ◽  
Vol 3 (1) ◽  
pp. 7 ◽  
Author(s):  
Anthony Stanislaus ◽  
Anil Philip Kunnath ◽  
Snigdha Tiash ◽  
Tahereh Fatemian ◽  
Nur Izyani Kamaruzman ◽  
...  

Cervical cancer is the second most common cancer and fourth leading cause of cancer-related deaths among women. Advanced stage of the disease is treated with radiation therapy and chemotherapy with poor therapeutic outcome and adverse side effects. NFκB, a well-known transcription factor in the control of immunity and inflammation, has recently emerged as a key regulator of cell survival through induction of antiapoptotic genes. Many human cancers, including cervical carcinoma, constitutively express NF-κB and a blockade in expression of its subunit proteins through targeted knockdown of the gene transcripts with small interfering RNAs (siRNA) could be an attractive approach in order to sensitize the cancer cells towards the widely used anti-cancer drugs. However, the inefficiency of the naked siRNA to cross the plasma membrane and its sensitiveness to nuclease-mediated degradation are the major challenges limiting the siRNA technology in therapeutic intervention. pH-sensitive carbonate apatite has been established as an efficient nano-carrier for intracellular delivery of siRNA, due to its strong electrostatic interaction with the siRNA, the desirable size distribution of the resulting siRNA complex for effective endocytosis and the ability of the endocytosed siRNA to be released from the degradable particles and escape the endosomes, thus leading to the effective knockdown of the target gene of cyclin B1 or ABCB1. Here, we report that carbonate apatite-facilitated delivery of the siRNA targeting NF-κB1 and NF-κB2 gene transcripts in HeLa, a human cervical adenocar- cinoma cell line expressing NF-κB, led to a synergistic effect in enhancement of chemosensitivity to doxorubicin, but apparently not to cisplatin or paclitaxel.


2021 ◽  
Vol 18 (7) ◽  
pp. 1455-1460
Author(s):  
Songnian Liang ◽  
Linlin Liu

Purpose: To investigate the anticancer effects of sparteine against human cervical cancer. Methods: Cell viability was determined by CCK8 assay, while 4′, 6-diamidino-2-phenylindole (DAPI) staining was used for determination of apoptosis. Cell cycle analysis was done with flow cytometry, while cell invasion was monitored using Transwell invasion assays. Protein expressions were determined using Western blotting. Results: The results revealed that sparteine inhibited the viability of cervical cancer cells with halfmaximal inhibitory concentration (IC50) ranging from 10 to 25 µM. Sparteine exerted more profound antiproliferative effects on DoTc2 cells, with IC50 of 10 µM. However, minimal cytotoxicity was observed in normal cervical cells, as evident from the IC50 of 80 µM. Sparteine triggered the generation of ROS and apoptotic cell death in DoTc2 cells. The induction of apoptosis was accompanied by upregulation of Bax expression and downregulation of Bcl-2 expression. Sparteine caused arrest of DoTc2 cells at the G0/G1 phase of the cell cycle, and suppressed the expressions of cyclin A and cyclin B1. Transwell assay data showed that sparteine decreased the invasion ability of DoTc2 cells. Sparteine also inhibited the phosphorylation of VGFR2 in a concentration-dependent manner. Conclusion: Sparteine exhibits significant anticancer activity and may prove beneficial in cervical cancer chemotherapy.


10.4081/2516 ◽  
2010 ◽  
Vol 1 (1) ◽  
Author(s):  
Anthony Stanislaus ◽  
Sharif Hossain ◽  
Ming Jang Chua ◽  
Anil Philip Kunnath ◽  
Quek Chia Wen ◽  
...  

2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Wei-Jan Huang ◽  
Yu-Chih Liang ◽  
Shuang-En Chuang ◽  
Li-Ling Chi ◽  
Chi-Yun Lee ◽  
...  

HDAC inhibitors (HDACis) have been developed as promising anticancer agents in recent years. In this study, we synthesized and characterized a novel HDACi, termed NBM-HD-1. This agent was derived from the semisynthesis of propolin G, isolated from Taiwanese green propolis (TGP), and was shown to be a potent suppressor of tumor cell growth in human breast cancer cells (MCF-7 and MDA-MB-231) and rat glioma cells (C6), with an IC50ranging from 8.5 to 10.3 μM. Western blot demonstrated that levels of p21(Waf1/Cip1), gelsolin, Ac-histone 4, and Ac-tubulin markedly increased after treatment of cancer cells with NBM-HD-1. After NBM-HD-1 treatment for 1–4 h, p-PTEN and p-AKT levels were markedly decreased. Furthermore, we also found the anticancer activities of NBM-HD-1 in regulating cell cycle regulators. Treatment with NBM-HD-1,p21(Waf1/Cip1)gene expression had markedly increased whilecyclin B1andD1gene expressions had markedly decreased. On the other hand, we found that NBM-HD-1 increased the expressions of tumor-suppressor genep53in a dose-dependent manner. Finally, we showed that NBM-HD-1 exhibited potent antitumor activity in a xenograft model. In conclusion, this study demonstrated that this compound, NBM-HD-1, is a novel and potent HDACi with anticancer activityin vitroandin vivo.


Gene ◽  
2006 ◽  
Vol 376 (1) ◽  
pp. 87-94 ◽  
Author(s):  
E.H. Chowdhury ◽  
A. Maruyama ◽  
A. Kano ◽  
M. Nagaoka ◽  
M. Kotaka ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Wai Kuan Yong ◽  
Sri Nurestri Abd Malek

We investigate induction of apoptosis by xanthohumol on Ca Ski cervical cancer cell line. Xanthohumol is a prenylated chalcone naturally found in hop plants, previously reported to be an effective anticancer agent in various cancer cell lines. The present study showed that xanthohumol was effective to inhibit proliferation of Ca Ski cells based on IC50values using sulforhodamine B (SRB) assay. Furthermore, cellular and nuclear morphological changes were observed in the cells using phase contrast microscopy and Hoechst/PI fluorescent staining. In addition, 48-hour long treatment with xanthohumol triggered externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells. Additionally, xanthohumol mediated S phase arrest in cell cycle analysis and increased activities of caspase-3, caspase-8, and caspase-9. On the other hand, Western blot analysis showed that the expression levels of cleaved PARP, p53, and AIF increased, while Bcl-2 and XIAP decreased in a dose-dependent manner. Taken together, these findings indicate that xanthohumol-induced cell death might involve intrinsic and extrinsic apoptotic pathways, as well as downregulation of XIAP, upregulation of p53 proteins, and S phase cell cycle arrest in Ca Ski cervical cancer cells. This work suggests that xanthohumol is a potent chemotherapeutic candidate for cervical cancer.


2018 ◽  
Vol 18 (1) ◽  
pp. 52-54
Author(s):  
Sothing Vashum ◽  
Rabi Raja Singh I ◽  
Saikat Das ◽  
Mohammed Azharuddin KO ◽  
Prabhakaran Vasudevan

AbstractAimDNA double-strand break (DSB) results in the phosphorylation of the protein, H.2AX histone. In this study, the effect of radiotherapy and chemotherapy on DNA DSB in cervical cancer cells is analysed by the phosphorylation of the protein.MethodsThe cervical cancer cells (HeLa cells) were cultured and exposed to ionising radiation. Radiation sensitivity was measured by clonogenic survival fraction after exposing to ionising radiation. Since the phosphorylation of H.2AX declines with time, the DNA damage was quantified at different time points: 1 hour, 3 hours and 1 week after exposed to the radiation. The analysis of γ-H.2AX was done by Western-blot technique. The protein expression was observed at different dose of radiation and combination of both radiation and paclitaxel.ResultsLow-dose hypersensitivity was observed. By 1 week after radiation at 0·5, 0·8 and 2 Gy, there was no expression of phosphorylated H.2AX. Previous experiments on the expression of phosphorylated H.2AX (γ-H.2AX) in terms of foci analysis was found to peak at 1 hour and subsequently decline with time. In cells treated with the DNA damaging agents, the expression of phosphorylated H.2AX decreases in a dose-dependent manner when treated with radiation alone. However, when combined with paclitaxel, at 0·5 Gy, the expression peaked and reduces at 0·8 Gy and slightly elevated at 2 Gy.FindingsIn this study, the peak phosphorylation was observed at 3 hour post irradiation indicating that DSBs are still left unrepaired.


Author(s):  
Xiaoling Wu ◽  
Zhiqin Yang ◽  
Huimin Dang ◽  
Huixia Peng ◽  
Zhijun Dai

Baicalein, a flavonoid derived from the root of Scutellaria baicalensis, has been reported to possess multiple pharmacological activities, such as anticancer and anti-inflammatory properties. This study investigated the effect of baicalein in cervical cancer cells. Cell growth curve and MTT assay were performed and revealed that baicalein inhibited the proliferation of SiHa and HeLa cells in a dose-dependent manner. We further found that baicalein arrested the cell cycle of SiHa and HeLa cells at the G0/G1 phase by suppressing the expression of cyclin D1 through the downregulation of phosphorylated protein kinase B (p-AKT) and phosphorylated glycogen synthase kinase 3β (p-GSK3β) according to FACS assays and Western blotting. Moreover, when CHIR-99021, a GSK3β inhibitor, was added to baicalein-treated SiHa cells, the expression of cyclin D1 was recovered, and cell proliferation was promoted. In conclusion, these data indicated that baicalein suspended the cell cycle at the G0/G1 phase via the downregulation of cyclin D1 through the AKT‐GSK3β signaling pathway and further inhibited the proliferation of SiHa and HeLa cervical cancer cells.


2020 ◽  
Author(s):  
Fang Ren ◽  
Gong Zhang ◽  
Caiyu Li ◽  
Gailing Li ◽  
Yuan Cao ◽  
...  

Abstract Background: Hesperetin, an active compound found in citrus fruits, possesses antiproliferative effects toward several types of cancer cell lines, including cervical cancer. In this study, we explore the antitumor effects of Hesperetin on the human cervical cancer human papilloma virus (HPV)-positive (CaSki and HeLa) and HPV-negative (C-33A) cell lines and further elucidated the underlying mechanisms of this action. Methods: Cell viability and proliferation was measured by the MTT assay and 5-ethynyl-2′-deoxyuridine (EdU) incorporation assay, respectively. dUTP-fluorescein nick end-labeling (TUNEL) staining, Annexin V‑fluorescein isothiocyanate (FITC)/propidium iodide (PI) staining and flow cytometry was used to assess the degree of apoptosis. JC-1 staining assay was used to evaluate the change of mitochondrial membrane potential (ΔΨm) and Western blot assays were used to determine apoptosis-related factors at protein level. Results: Hesperetin (100, 200 and 400 μM) exhibited a significant exclusive inhibitory effect against the growth of HPV-infected CaSki and HeLa cancer cells via induction of apoptosis in a concentration-dependent manner, while it was almost not active in HPV-negative C-33A cancer cells and normal cervix epithelial H8 cells. Moreover, this antitumor effect executed by Hesperetin was associated with disruption of ΔΨm, the release of cytochrome c from mitochondria, activation of pro-apoptotic proteins (Bax, cleaved caspase-3 and caspase-9) and inhibition of anti-apoptotic proteins (Bcl-2). During this process, cleaved caspase-8 remained unchanged. In addition, Hesperetin led to a downregulation of E6 oncoprotein expression and upregulation of tumor suppressor protein p53 level. Conclusions: Collectively, these results implicated that Hesperetin can induce apoptosis of HPV‑positive cervical cancer cells via a mitochondria-mediated intrinsic signaling pathway, together with the repression of E6 and enhancement of p53 protein level, indicating Hesperetin may be considered as a potential candidate for the development of innovative anti-HPV cervical cancer agents.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2514
Author(s):  
Xinyu Zhou ◽  
Sietske N. Zijlstra ◽  
Abel Soto-Gamez ◽  
Rita Setroikromo ◽  
Wim J. Quax

Artemisinin derivatives, widely known as commercial anti-malaria drugs, may also have huge potential in treating cancer cells. It has been reported that artemisinin derivatives can overcome resistance to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in liver and cervical cancer cells. In our study, we demonstrated that artesunate (ATS) and dihydroartemisinin (DHA) are more efficient in killing colon cancer cells compared to artemisinin (ART). ATS/DHA induces the expression of DR5 in a P53 dependent manner in HCT116 and DLD-1 cells. Both ATS and DHA overcome the resistance to DHER-induced apoptosis in HCT116, mainly through upregulating death receptor 5 (DR5). We also demonstrate that DHA sensitizes HCT116 cells to DHER-induced apoptosis via P53 regulated DR5 expression in P53 knockdown assays. Nevertheless, a lower effect was observed in DLD-1 cells, which has a single Ser241Phe mutation in the P53 DNA binding domain. Thus, the status of P53 could be one of the determinants of TRAIL resistance in some cancer cells. Finally, the combination treatment of DHA and the TRAIL variant DHER increases cell death in 3D colon cancer spheroid models, which shows its potential as a novel therapy.


Sign in / Sign up

Export Citation Format

Share Document