scholarly journals The molecular pathogenesis of multiple myeloma

2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Niccolò Bolli ◽  
Giovanni Martinelli ◽  
Claudio Cerchione

Multiple myeloma (MM) is characterized by uncontrolled proliferation and accumulation of clonal plasma cells within the bone marrow. However, the cell of origin is a B-lymphocyte acquiring aberrant genomic events in the germinal center of a lymph node as off-target events during somatic-hypermutation and class-switch recombination driven by activation-induced-deaminase. Whether pre-germinal center events are also required for transformation, and which additional events are required for disease progression is still matter of debate. As early treatment in asymptomatic phases is gaining traction in the clinic, a better understanding of the molecular pathogenesis of myeloma progression would allow stratification of patients based on their risk of progression, thus rationalizing efficacy and cost of clinical interventions. In this review, we will discuss the development of MM, from the cell of origin through asymptomatic stages such as monoclonal gammopathy of undetermined significance and smoldering MM, to the development of symptomatic disease. We will explain the genetic heterogeneity of MM, one of the major drivers of disease recurrence. In this context, Moreover, we will propose how this knowledge may influence future diagnostic and therapeutic interventions. 

2019 ◽  
Vol 3 (1) ◽  
pp. 1-7
Author(s):  
Made Bakta

Multiple myeloma (MM) is a neoplastic plasma disorder that is characterized by clonal proliferation of malignant plasma cells in the bone marrow, monoclonal protein in the blood or urine and associated organ dysfunction. It is preceded by a premalignant tumor which is share genetic abnormalities, monoclonal gammopathy of undetermined significance (MGUS). Although remarkable progress has been achieved, but pathogenesis of MM is still very complex. Multiple myeloma appears to arise from the malignant transformation of germinal-center B-lymphocyte. The first oncogenic events in MM appear to occur in the germinal center due to error in isotype class switching and somatic hypermutation. MM is divided into two distinct genetic subtypes: (1) hyperdiploid myeloma is characterized by multiple trisomies of chromosome 3, 5, 7, 9, 11, 15, 19 and 21; (2) non-hyperdiploid in contrast is characterized by recurrence translocations t(4;14), t(14;16), t (14;20); t(6;14) and t(11;14). A unifying event in the pathogenesis of MM is the dysregulated expression of cyclin D gene. Genetic aberrations occur in MM and also in premalignant state (MGUS), suggesting that genetic mutations alone are necessary, but not sufficient for myeloma transformation. A “ random second hit model” was proposed. Hypothetical second hits are: additional genetic changes ( RAS mutation, p16 methylation, p53 mutation), proliferation due to cell cycle dysregulation, evasion of programmed cell death and changes in bone marrow microenvironment. A complex interaction with the BM microenvironment , characterized by activation of osteoclast and supression of osteoblast , leads to lytic bone lesions. 


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1534-1534
Author(s):  
Fotios A. Asimakopoulos ◽  
Harold E. Varmus

Abstract Multiple myeloma (MM) is characterized by monoclonal expansion of bone marrow plasma cells. However, long-lived plasma cells resident in the marrow are terminally differentiated and possess a limited replicative lifespan; it is puzzling how they could be the source of aggressive and relapsing neoplasms. We postulate that the myeloma clonogenic progenitor may reside in a more immature compartment with greater self-renewal capacity, most probably a cell participating in, or having shortly exited the germinal center reaction. However, it is unclear whether critical mutations occur in the target cell prior to, or following commitment to the plasma cell fate. To investigate the nature of the MM cell-of-origin, we have created a novel flexible mouse model system that enables the delivery of stochastic, sequential, somatic mutations to precisely defined compartments of the germinal center in secondary lymphoid tissues. To this end, we have used BAC transgenic technology to express distinct types of avian leukosis virus (ALV) receptors, TVA and TVB, in the expanding centroblast of the dark zone and the committed plasmablast of the light zone, respectively. Mammalian tissues are refractory to transduction by retroviruses of the ALV family unless they ectopically express the cognate avian-derived receptors. Thus, the coding sequences for the TVA receptor, fused to a fluorescent protein tag were placed under the control of transcription factor A-myb, expressed in centroblasts of the dark zone. Similarly, sequences encoding a fluorescent-tagged TVB receptor were placed under the control of transcription factor Blimp1, expressed in the earliest committed plasmablasts as well as mature plasma cells. Analysis of the Blimp1: TVB mice showed that expression of the avian retroviral receptor in the hematopoietic system is limited to the light zone of germinal centers, extrafollicular collections of CD138+ cells in the spleen and lymph nodes as well as long-lived bone marrow plasma cells. Analysis of A-myb: TVA transgenic mice is currently underway. The system permits the introduction of a variety of molecular lesions to specific plasma cell precursors via retroviral transduction of oncogenes, shRNAs against tumor suppressor genes or inducible regulators of gene expression in an attempt to re-create the sequence of molecular lesions leading to MM in the relevant cellular context.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 243-243 ◽  
Author(s):  
Fotios Asimakopoulos ◽  
Harold Varmus

Abstract Multiple myeloma (MM) and related plasma cell dyscrasias are characterized by monoclonal expansion of terminally differentiated plasma cells. However, it is puzzling how the quiescent plasma cell can be the source of often aggressive and relapsing neoplasms. We and others have postulated that the myeloma clonogenic progenitor may reside in a more immature compartment with greater self-renewal capacity, most probably a maturing plasmablast precursor in the germinal center. To investigate the nature of cell-of-origin for these diseases and the genetic requirements for pathogenesis, we have created a novel flexible mouse model system that enables the delivery of stochastic, sequential, somatic mutations to precisely defined compartments of the germinal center in secondary lymphoid tissues. To this end, we have used BAC transgenic technology to express distinct types of avian leukosis virus (ALV) receptors, TVA and TVB, in the expanding centroblast of the dark zone and the committed plasmablast of the light zone, respectively. Mammalian tissues are refractory to transduction by retroviruses of the ALV family unless they ectopically express the cognate avian-derived receptors. Thus, the coding sequences for the TVA receptor, fused to a fluorescent protein tag were placed under the control of transcription factor A-myb, expressed in centroblasts of the dark zone. Similarly, sequences encoding a fluorescent-tagged TVB receptor were placed under the control of transcription factor Blimp1, expressed in the earliest committed plasmablasts as well as mature plasma cells. Analysis of the Blimp1: TVB mice showed that expression of the avian retroviral receptor in the hematopoietic system is limited to the light zone of germinal centers, extrafollicular collections of CD138+ cells in the spleen and lymph nodes as well as long-lived bone marrow plasma cells. Analysis of A-myb: TVA transgenic mice demonstrated expression of the fusion receptor to be restricted to B cells in the immunized spleen but not T cells. Both transgenic systems have been crossed into an Ink4a/Arf-deficient background. We have been transducing plasma cell precursors generated in the course of immune responses to T-dependent antigens with retroviral vectors carrying genes important in myelomagenesis, such as cyclin D1 or c-Myc. Animals are being monitored for development of plasma cell dyscrasias by periodical serum protein electrophoresis (SPEP) and other assays.


2020 ◽  
Vol 20 (18) ◽  
pp. 2316-2323 ◽  
Author(s):  
Alican Kusoglu ◽  
Bakiye G. Bagca ◽  
Neslihan P.O. Ay ◽  
Guray Saydam ◽  
Cigir B. Avci

Background: Ruxolitinib is a selective JAK1/2 inhibitor approved by the FDA for myelofibrosis in 2014 and nowadays, comprehensive investigations on the potential of the agent as a targeted therapy for haematological malignancies are on the rise. In multiple myeloma which is a cancer of plasma cells, the Interleukin- 6/JAK/STAT pathway is emerging as a therapeutic target since the overactivation of the pathway is associated with poor prognosis. Objective: In this study, our purpose was to discover the potential anticancer effects of ruxolitinib in ARH-77 multiple myeloma cell line compared to NCI-BL 2171 human healthy B lymphocyte cell line. Methods: Cytotoxic effects of ruxolitinib in ARH-77 and NCI-BL 2171 cells were determined via WST-1 assay. The autophagy mechanism induced by ruxolitinib measured by detecting autophagosome formation was investigated. Apoptotic effects of ruxolitinib were analyzed with Annexin V-FITC Detection Kit and flow cytometry. We performed RT-qPCR to demonstrate the expression changes of the genes in the IL-6/JAK/STAT pathway in ARH-77 and NCI-BL 2171 cells treated with ruxolitinib. Results: We identified the IC50 values of ruxolitinib for ARH-77 and NCI-BL 2171 as 20.03 and 33.9μM at the 72nd hour, respectively. We showed that ruxolitinib induced autophagosome accumulation by 3.45 and 1.70 folds in ARH-77 and NCI-BL 2171 cells compared to the control group, respectively. Treatment with ruxolitinib decreased the expressions of IL-6, IL-18, JAK2, TYK2, and AKT genes, which play significant roles in MM pathogenesis. Conclusion: All in all, ruxolitinib is a promising agent for the regulation of the IL-6/JAK/STAT pathway and interferes with the autophagy mechanism in MM.


2019 ◽  
Vol 32 (1) ◽  
pp. 27-38 ◽  
Author(s):  
Shuhei Sakakibara ◽  
Teruhito Yasui ◽  
Hideyuki Jinzai ◽  
Kristy O’Donnell ◽  
Chao-Yuan Tsai ◽  
...  

Abstract Immune responses against certain viruses are accompanied by auto-antibody production although the origin of these infection-associated auto-antibodies is unclear. Here, we report that murine γ-herpesvirus 68 (MHV68)-induced auto-antibodies are derived from polyreactive B cells in the germinal center (GC) through the activity of short-lived plasmablasts. The analysis of recombinant antibodies from MHV68-infected mice revealed that about 40% of IgG+ GC B cells were self-reactive, with about half of them being polyreactive. On the other hand, virion-reactive clones accounted for only a minor proportion of IgG+ GC B cells, half of which also reacted with self-antigens. The self-reactivity of most polyreactive clones was dependent on somatic hypermutation (SHM), but this was dispensable for the reactivity of virus mono-specific clones. Furthermore, both virus-mono-specific and polyreactive clones were selected to differentiate to B220lo CD138+ plasma cells (PCs). However, the representation of GC-derived polyreactive clones was reduced and that of virus-mono-specific clones was markedly increased in terminally differentiated PCs as compared to transient plasmablasts. Collectively, our findings demonstrate that, during acute MHV68 infection, self-reactive B cells are generated through SHM and selected for further differentiation to short-lived plasmablasts but not terminally differentiated PCs.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1415-1415
Author(s):  
Brian J. Taylor ◽  
Ming Ye ◽  
Erin R. Strachan ◽  
Tara M. Tiffinger ◽  
Andrew R. Belch ◽  
...  

Abstract Analysis of immunoglobulin V genes, which undergo stepwise changes during B cell differentiation such as VDJ rearrangement, somatic hypermutation, and class switch recombination, provides insight into the point of transformation of B cell tumors. In Multiple Myeloma (MM), clonotypic VDJ sequences of malignant plasma cells are mutated, homogeneous, and associated with post-switch constant regions (either IgG or IgA, called the clinical isotype), suggesting the malignant arm of the MM clone arises from transformation events in the late stages of the germinal centre reaction. By contrast, the existence of clonotypic VDJ associated with pre-switch IgM is well established, and we have shown persistent clonotypic IgM is associated with advanced disease at diagnosis and poor survival in MM. Whether clonotypic IgM cells represent a malignant progenitor or a non-malignant population that parallels disease severity is unclear. To address these possibilities, we focused our analysis of clonotypic VDJ mutation profiles on IgM+ cells sorted by immunomagnetic separation from MM patient peripheral blood cells (PBMC). IgM clonotypic transcripts were amplified by hemi-nested RT-PCR targeting the CDR2-C mu constant region in IgM+ cells from 4/7 patients. These products were cloned, and 122, 28, 27, and 25 IgM clonotypic colonies were identified by specific CDR2/CDR3 PCR for patients 1–4 respectively. Each of these clones was sequenced, and mutations were identified by comparison with the closest germline V gene and tumor derived plasma cell VDJ sequences. An average mutation frequency of 0.005, significantly greater than the Taq error rate, was obtained for the 250–280 bp fragment downstream of CDR2, including the D-J-C mu region. Typically, MM clones were observed with 1–2 mutations in this region, many localizing to the D-J-C mu region. Small deletions that preserve reading frame were also observed in the D region of single clones of patients 1 and 4 respectively. The detection of intraclonal heterogeneity amongst clonotypic IgM cells may reflect a normal arm of the myeloma clone that co-exists with the post-switch malignant arm. In previous work examining bulk PBMC populations we had detected diversified clonotypic cells in the non-clinical isotype compartment of one patient, but, in accordance with studies performed by several other groups, were unable to detect diversified pre-switch counterparts. In this work we have focused on IgM+ MM B cells, a compartment of the MM clone that may remain driven by antigenic selection and undergo persistent clonal expansion. Our analysis gives insight into the nature of this proposed normal arm of the myeloma clone, revealing two coexisting subsets of pre-switch clonotypic IgM cells: a major set exhibiting homogeneity, identity with post-switch tumor VDJ, and questionable transformation status, and a minor clonally heterogeneous set which may represent the pre-malignant clone from which myeloma arose.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1881-1881 ◽  
Author(s):  
Shebli Atrash ◽  
Qing Zhang ◽  
Xenofon Papanikolaou ◽  
Christoph Heuck ◽  
Aziz Bakhous ◽  
...  

Abstract Introduction Multiple Myeloma (MM) is considered a malignancy of post germinal center long-lived plasma cells. Nevertheless T-cell independent antigen stimulation before the exposure of the B-cell to the germinal center can happen and results to IgM secreting short lived plasma cells and lymphoplasmacytes representing thus a potential alternative normal counterpart for IgM plasma cell dyscrasias. IgM myeloma is an infrequent subtytpe of MM with an estimated prevalence of 0.5%. Due to its rarity little is known about its characteristics and prognosis in comparison with Waldestrom’s macroglobulinemia (WM) and the other MM subtypes. Purpose To identify the characteristics and the prognosis of IgM MM, and compare it predominantly with WM and subsequently with the rest of the MM subtypes. Methods We interogatted our Multiple Myeloma Data Base for cases of IgM MM and their respective Overall Survival (OS), Progression Free Survival (PFS), bone disease as defined by x-Rays, PET-CT and MRI, Gene Expression Profile (GEP), and common disease characteristics (anemia,calcium, creatinine) and compare it to the prognosis of WM and non-IgM MM. Diagnosis was based on the morphological and immunophenotypical findings of pathologically examined biopsy specimens along with the presence or not of typical clinical characteristics of MM (lytic bone lesions, hypercalcemia, renal failure) or typical clinical characteristics of WM (organomegaly, lymphadenopathy). Results There were 22 confirmed IgM MM cases. 14 of them presented at MIRT at initial diagnosis while 8 had previously been treated elsewhere. Osteolytic bone lesions and/or pathological fractures by x-ray and CT examination were evident in 16 cases. For the remaining 6 cases active bone focal lesions by either MRI or PET were identified in three. There was no organomegaly evident in cases with an available PET/CT at baseline, while only one had evidence of hilar and mediastinal lymphadenopathy along with calcified lung nodules. Elevated creatinine levels (>2.0 mg/dl) were evident in 4 cases at initial diagnosis. Their disease characteristics are depicted in the table 1. Median OS for IgM MM was 4.9 years while PFS could not be accurately estimated due to lack of data on patients treated elsewhere. Median OS for a historical control of 158 WM cases in MIRT was 9.2 years (Clin Lymphoma Myeloma Leuk. 11(1):139-42). Median OS of the WM group remained largely unaffected, even when the subgroup of the WM cases requiring treatment was analyzed (9.0 years).To further clarify if the IgM MM differs in terms of OS from the other isotypes of MM, we compared the IgM group to a group of 61 non-IgM MM cases which were matched by important prognostic clinical factors (age, creatinine> 2mg/dl, LDH>190u/L, b-2M >5.5mg/dl and Albumin<3.5gr/dl). No statistical difference was found for OS (p=0.846). Out of 22 cases, 14 of them had available GEP data on initial diagnosis. In 6 of these cases the cyclin D1 gene expression was high enough to be consistent with a t(11;14) translocation at FISH analysis, one case was consistent with a t(14;16) translocation, one with a t(4;14) translocation and two more were classified as belonging to the hyperdiploid subgroup. A comparative genomic analysis was performed on the IgM MM, the non-IgM MM and WM cases with available GEP data at initial diagnosis (14, 61 and 42 cases respectively). 1155 probesets that had expression level significantly different between WM and non IgM MM (FDR<3E-06) were identified. Then, the expression values of these 1155 probesets in all GEP samples, including WM, non IgM MM, and IgM MM, were used to build a clustering tree. We found that IgM MM mainly clustered with non IgM MM, supporting the findings of the clinical data. Conclusion IgM MM is a discrete clinical entity that should be distinguished from WM. Bone disease is evident in the majority of the cases, especially when specialized radiological techniques are incorporated at the initial work up. It holds a distinct prognosis from WM, while when balanced for prognostic factors that hold importance in MM it does not differ from the other MM isotypes. Finally analysis of the genetic data further supports the resemblance between IgM MM and the non IgM MM, and the difference with WM. Disclosures: Zhang: University of Arkansas for Medical Sciences: Co-inventor of the DNA probes for FISH of IGHC/IGHV (14q32), MMSET/FGFR3 (4p16), CCND3 (6p21), CCND1 (11q13), MAF (16q23), and MAFB (20q12) loci, sub. to the US Patent & Trademark Office as Prov. App# 61/726,327: Methods of Detecting 14q32 Translocations, Co-inventor of the DNA probes for FISH of IGHC/IGHV (14q32), MMSET/FGFR3 (4p16), CCND3 (6p21), CCND1 (11q13), MAF (16q23), and MAFB (20q12) loci, sub. to the US Patent & Trademark Office as Prov. App# 61/726,327: Methods of Detecting 14q32 Translocations Patents & Royalties.


Blood ◽  
1987 ◽  
Vol 70 (5) ◽  
pp. 1550-1553 ◽  
Author(s):  
J Berenson ◽  
R Wong ◽  
K Kim ◽  
N Brown ◽  
A Lichtenstein

Because there is controversy regarding whether subsets of peripheral blood lymphocytes (PBLs) are part of the malignant clone in patients with multiple myeloma, we studied this question by immunoglobulin and T cell receptor gene analysis. Southern blot analysis with antibody probes demonstrated clonal immunoglobulin gene rearrangements in PBLs of seven of nine patients that were identical to those seen in their marrow plasma cells. Circulating plasma cells were not detected in any of these patients. In contrast, no patient demonstrated clonally rearranged T cell receptor genes. In one sequentially studied patient, PBLs obtained at diagnosis when he had stage I (Durie-Salmon) contained only germline DNA, while analysis of PBLs at relapse (stage III) revealed a clonally rearranged band. These data confirm the notion that circulating lymphocytes in patients with myeloma are part of the malignant clone and, furthermore, these malignant cells are of B cell rather than T cell lineage.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3369-3369 ◽  
Author(s):  
Veronica Gonzalez de la Calle ◽  
Ramon Garcia-Sanz ◽  
Eduardo Sobejano ◽  
Enrique M. Ocio ◽  
Noemi Puig ◽  
...  

Abstract BACKGROUND Smoldering multiple myeloma (SMM) is a plasma cell proliferative disorder with no related organ or tissue impairment. It is associated with a risk of progression to symptomatic multiple myeloma (MM) of approximately 10% per year. Several prognostic factors for the progression to active disease have been identified, such as those defined by the Mayo Clinic including the proportion of bone marrow plasma cells, the serum monoclonal protein level at diagnosis and the serum immunoglobulin free light chain ratio (FLC); or those defined by the Spanish Group including the proportion of bone marrow aberrant plasma cells assessed by flow cytometry plus immunoparesis. The presence of Bence Jones (BJ) proteinuria is a myeloma feature associated with renal function and tumor burden as well. There is lack of evidence about the role of BJ proteinuria in SMM as predictor marker of progression to symptomatic disease. AIMS The goal of the present study was to investigate the role of the presence of Bence Jones proteinuria at diagnosis in SMM as predictor of progression to symptomatic disease. METHODS We reviewed 147 medical records of SMM patients from area of Castilla y León (Spain), diagnosed between 1983 and 2013, according to the criteria of the International Myeloma Working Group. The primary endpoint was time to progression to active multiple myeloma (hypercalcemia, renal insufficiency, anemia or bone lesions). RESULTS 147 patients with SMM were included in the analysis. The median age at diagnosis was 69 years-old (range: 34-90).The serum M-protein at diagnosis ranged from 1 to 26 g/l (median,25). 70% of SMM were Ig G subtype. The proportion of bone marrow plasma cells ranged from 1% to 55% (median, 14). In 64 % of SMM, the percentage of aberrant plasma cells assessed by flow cytometry was superior to 95% and 51% had immunoparesis. Bence Jones proteinuria was detected at diagnosis in 40 patients (27%) and the average amount of urinary monoclonal light chain was 236 mg per 24h. Of those patients, 58% had a monoclonal kappa light chain. The FLC ratio was assessed in 18 patients and it was abnormal (<0.26 or >1.65) in 83% of them. The median level of involved Immunoglobulin was 88.5 mg/l (range, 13-1200) and the median ratio of involved to uninvolved was 10.8 (range, 2.2-3360). In 4 patients, FLC ratio was greater than 100. At a median follow-up of 54 months, progression to active disease occurred in 49%. Anemia was the most common CRAB feature at the time of progression. Median time to progression (TTP) to symptomatic disease in the whole series was 63 months. SMM with BJ proteinuria had a significantly shorter median TTP to active disease as compared with patients without BJ proteinuria (21.7 months vs 82.9 months ;HR: 2.44, IC 95%: 1.48-4.02; p<0.001). The progression risk at 2 years in the BJ group of SMM was 53%. Multivariate analysis selected BJ proteinuria at diagnosis as an independent variable for progression to symptomatic MM (HR: 2.47, IC 95%: 1.32-4.63; P=0.005). Using this independent variable, we identified 4 risk categories according to amount of urinary monoclonal light chain: 0 mg per 24h; 1-250 mg/24h; 251-500 mg/24h ; or more than 500 mg/24h, with a median TTP of 83, 37, 16 and 7 months, respectively; p <0.001. CONCLUSIONS The presence of Bence Jones proteinuria at diagnosis in SMM patients is associated with significantly higher risk of progression to active MM (53% risk of progression at 2 years). Moreover, the presence of more than 500 mg of BJ proteinuria can be considered as a marker for the identification of ultra high risk SMM. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 4384-4384
Author(s):  
Hearn Jay Cho ◽  
Deepak Perumal ◽  
Adeeb H Rahman ◽  
Seunghee Kim-Schultze ◽  
Jennifer Yesil ◽  
...  

Multiple myeloma (MM) is a malignancy of plasma cells that arises from premalignant Monoclonal Gammopathy of Undetermined Significance (MGUS) and often progresses through an asymptomatic Smoldering (SMM) phase lasting months or years before manifesting clinical symptoms warranting therapy. Current research indicates that the tumor microenvironment (TME) in the bone marrow may play a significant role in governing progression to symptomatic disease. Therefore, understanding of the interactions between malignant plasma cells and the TME in early disease states is critical in the pursuit of therapies that will prevent progression to symptomatic disease. We performed high dimensional genomic and immunologic analysis of bone marrow specimens from 73 subjects with SMM. We performed RNA-seq on the malignant plasma cells isolated by anti-CD138 magnetic bead positive selection, mass cytometry (CyTOF) and T cell receptor sequencing (TCR Seq) of CD138-depleted bone marrow mononuclear cells, and proteomics, seromic, and grand serology analysis of bone marrow plasma. These samples and assays provided a broad view of the tumor cells and the cellular and soluble components of the TME. Each of these assays identified self-organizing clusters of subjects, indicating that subgroups of SMM patients shared common characteristics in the tumor or TME populations. We then applied novel bioinformatic methods to compare data from pairs, trios, quartets, and quintets of assays to identify communities of subjects with similar immunologic and genomic characteristics. Integrated analysis of CyTOF, proteomic, and TCR Seq resolved three distinct communities with a high degree of significance. These communities shared distinct cellular and proteomic features that suggested early adaptive, activated adaptive, or innate immune characteristics. These results suggest that the continuum from MGUS to MM does not consist of a single pathway in either the tumor cells or the TME, and that complex interactions ultimately determine progression. This suite of assays (CyTOF, proteomics, and TCR Seq) may be applicable in translational and clinical studies to understand key tumor and immune determinants of SMM and lead to rationally designed therapy to replicate these conditions to prevent progression to symptomatic disease. Disclosures Cho: Genentech: Honoraria, Research Funding; Celgene: Honoraria, Research Funding; The Multiple Myeloma Research Foundation: Employment; Takeda: Research Funding; BMS: Consultancy; Agenus: Research Funding; GSK: Consultancy. Adams:Janssen Pharmaceuticals R&D: Employment, Other: Own Stock. Parekh:Foundation Medicine Inc.: Consultancy; Celgene Corporation: Research Funding; Karyopharm Inc.: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document