scholarly journals TAVOLA PERIODICA, ELEMENTI E MINERALI: UNA STORIA AFFASCINANTE

Author(s):  
Paolangelo Cerea

In the year 1869, 150 years ago, Dmitrij Ivanovič Mendeleev published the classification of the known chemical elements in the form of a periodic table. This scientific goal was achieved thanks to the genius both of Mendeleev, that had recognized the periodicity in the properties of the elements, and of those who had identified all the elements already known at Mendeleev’s time. This discovery process frequently occurred at the edge between chemistry and mineralogy, as a result both of the scientist’s curiosity and of the need to identify the minerals useful to the metals smelting. A brief description of the path that has lead to the discovery of all the elements of the periodic table is not possible; for that reason this work is going to deepen the analysis on the elements whose discovery has involved a mineral and was particularly peculiar. This discovery path had begun already in the ancient time. It is possible to say that the mankind started to isolate and handle the elements during the neolithic age, becoming, over time, more skillfull in recognizing new elements. The path has begun by using the metals already present in nature as native ores, as copper, silver and gold, all already known during the chalcolithic age. From this first step to the invention of the first extraction techniques and smelting, able to yield the metal starting from its minerals, it was a short step. In the ancient time at least nine elements were already known and used. We are talking about “elements”, giving to this word the meaning used in the modern chemistry. This last consideration could lead to another scenario that, however, is out of this speech: the evolution of the concept of “element”. The new elements discovery path, still before the modern definition of “element”, received a huge help by the alchemy: the isolation of four elements was achieved in that period. During the XVIII century the discovery of new elements has seen an acceleration, thanks to the historical context of the Age of Enlightenment. In that period two very similar stories involved the discovery of cobalt and nickel. Both these elements are named from creatures belonging to the miners’ mithology: the miners used to find frequently minerals that, based on their experience, should have contained metals. Those minerals, however, did not yield any known metal and, for this, the miners blamed fantasy creatures: the Kobolds, sprites stemming from Germanic mythology, and Nickel, a mischievous sprite also belonging to German miners mythology. These puzzles were solved by two scientist: George Brandt, that discovered the cobalt, and Axel Frederik Cronstedt, that discovered the nickel. A very peculiar case is represented by fluorine: between the demonstration, occurred in the 1771, that the fluorite contains a new element, and the isolation of elemental fluorine, successfully performed only in the 1886, more than one hundred years have passed. Sometimes the identification of new elements was the product of lucky coincidences. The beginning of the epopee of the rare earth elements discovery was one of these cases; it was determined by two main factors: the presence in Sweden of some important chemists and the discovery, at that time, of a strange mineral, called gadolinite, in a quarry close to the village of Ytterby. Sometimes the identification of a new element was determined by a very clever reasoning about incongruous data and measures. The fact that the radioactivity of the pitchblende (or uraninite) was too high considering only its content in uranium, has lead Marie Sklodowska Curie to the discovery of polonium. The discovery of new elements, in the last century, moved from the edge between chemistry and mineralogy to the edge between chemistry and physics.

Author(s):  
Paul J. Karol

Uranium was Discovered in 1789 by the German chemist Martin Heinrich Klaproth in pitchblende ore from Joachimsthal, a town now in the Czech Republic. Nearly a century later, the Russian chemist Dmitri Mendeleev placed uranium at the end of his periodic table of the chemical elements. A century ago, Moseley used x-ray spectroscopy to set the atomic number of uranium at 92, making it the heaviest element known at the time. This chapter will deal with the quest to explore that limit and heavy and superheavy elements, and provide an update on where continuation of the periodic table is headed and some of the significant changes in its appearance and interpretation that may be necessary. Our use of the term “heavy elements” differs from that of astrophysicists who refer to elements above helium as heavy elements. The meaning of the term “superheavy” element is still not exactly agreed upon and has changed over the past several decades. “Ultraheavy” is occasionally used. Interestingly, there is no formal definition of “periodic table” by the International Union of Pure and Applied Chemistry (IUPAC) in their glossary of definitions: the “Gold Book.” But there are plenty of definitions in the general literature—including Wikipedia, the collaborative, free, internet encyclopedia which calls the “periodic table” a “tabular arrangement of the chemical elements, organized on the basis of their atomic numbers, electron configurations (electron shell model), and recurring chemical properties. Elements are presented in order of increasing atomic number (the number of protons in the nucleus).” IUPAC’s first definition of a “chemical element” is: “A species of atoms; all atoms with the same number of protons in the atomic nucleus.” Their definition of atom: “the smallest particle still characterizing a chemical element. It consists of a nucleus of positive charge (Z is the proton number and e the elementary charge) carrying almost all its mass (more than 99.9%) and Z electrons determining its size.”


Author(s):  
Guillermo Restrepo

The Periodic Table, Despite its near 150 years, is still a vital scientific construct. Two instances of this vitality are the recent formulation of a periodic table of protein complexes (Ahnert et al. 2015) and the announcement of four new chemical elements (Van Noorden 2016). “Interestingly, there is no formal definition of ‘Periodic Table’,” claims Karol (2017) in his chapter of the current volume. And even worse, the related concepts that come into play when referring to the periodic table (such as periodic law, chemical element, periodic system, and some others) overlap, leading to confusion. In this chapter we explore the meaning of the periodic table and of some of its related terms. In so doing we highlight a few common mistakes that arise from confusion of those terms and from misinterpretation of others. By exploring the periodic table, we analyze its mathematics and discuss a recent comment by Hoffmann (2015): “No one in my experience tries to prove [the periodic table] wrong, they just want to find some underlying reason why it is right.” We claim that if the periodic table were “wrong,” its structure would be variable; however the test of the time, including similarity studies, show that it is rather invariable. An approach to the structure of the periodic system we follow in this chapter is through similarity. In so doing we review seven works addressing the similarity of chemical elements accounting for different number of elements and using different properties, either chemical or physical ones. The concept of “chemical element” has raised the interest of several scholars such as Paneth (1962) and is still a matter of discussion given the double meaning it has (see, e.g., Scerri 2007, Earley 2009, Ruthenberg 2009, Ghibaudi et al. 2013, van Brakel 2014, Restrepo & Harré 2015), which is confusing, leading to misconceptions. The two meanings of the concept of chemical element are basic and simple substance. According to Paneth (1962), a basic substance belongs to the transcendental world and it is devoid of qualities, and therefore is not perceptible to our senses.


Author(s):  
Friedrich Hensel ◽  
Daniel R. Slocombe ◽  
Peter P. Edwards

The classification of a chemical element as either ‘metal’ or ‘non-metal’ continues to form the basis of an instantly recognizable, universal representation of the periodic table (Mendeleeff D. 1905 The principles of chemistry , vol. II, p. 23; Poliakoff M. & Tang S. 2015 Phil. Trans. R. Soc. A 373 , 20140211). Here, we review major, pre-quantum-mechanical innovations (Goldhammer DA. 1913 Dispersion und Absorption des Lichtes ; Herzfeld KF. 1927 Phys. Rev. 29 , 701–705) that allow an understanding of the metallic or non-metallic status of the chemical elements under both ambient and extreme conditions. A special emphasis will be placed on recent experimental advances that investigate how the electronic properties of chemical elements vary with temperature and density, and how this invariably relates to a changing status of the chemical elements. Thus, the prototypical non-metals, hydrogen and helium, becomes metallic at high densities; and the acknowledged metals, mercury, rubidium and caesium, transform into their non-metallic forms at low elemental densities. This reflects the fundamental fact that, at temperatures above the absolute zero of temperature, there is therefore no clear dividing line between metals and non-metals. Our conventional demarcation of chemical elements as metals or non-metals within the periodic table is of course governed by our experience of the nature of the elements under ambient conditions. Examination of these other situations helps us to examine the exact divisions of the chemical elements into metals and non-metals (Mendeleeff D. 1905 The principles of chemistry , vol. II, p. 23).


Author(s):  
Yu Liu

Chemical periodicity is arguably one of the most important ideas in science, and it has profoundly influenced the development of both modern chemistry and physics (Scerri 1997, 229). While the definition of periodicity has remained largely stable in the past 150 years, the periodic system has been visualized in a wide range of forms including (to name just a few) tables, spirals, and zigzags. Furthermore, information technology makes it much easier, and offers innovative ways, to produce new versions of periodic depictions (e.g., WebElements (Winter 1993)). The multitude of periodic visualizations arouses growing interest among scholars with different academic backgrounds. For instance, educational researchers and practitioners (e.g., Waldrip et al. 2010) wrestle with the question of which visual representation will most effectively help students master the subject content of periodicity. Likewise, philosophers tend to identify the ultimate display of the periodic system, which they use as evidence to support a realistic view of periodicity (Scerri 2007, 21). Other researchers, however, take a different attitude toward the stunning diversity of periodic depictions. In a seminal paper, Marchese (2013) examines the visualization of periodicity at different stages of history from the perspectives of tabular, cartographic, and hypermedia design. His analysis illuminates the periodic table’s plasticity and endeavors to justify the constant transformation of the periodic displays as a necessary means to meet scientists’ changing needs. While all these studies generally emphasize the importance of periodic depictions in scientific research and education, they tend to give primacy to the notion of “periodic system.” By contrast, the periodic table seems to play a secondary role, which either passively reflects the chemical law or responds to the evolving knowledge of chemical elements. Such a view runs the risk of underestimating the significant function of the periodic table as a productive research tool, one which enabled Mendeleev to successfully predict the existence and the properties of undiscovered elements such as germanium in 1869 (Kibler 2007, 222). It is important to note that science and technology are “both material and semiotic practices” (Halliday 1998, 228, italics in original).


2020 ◽  
pp. 13-19
Author(s):  
Sergey L. Chernyshev ◽  
Lev K. Isaev ◽  
Alexander D. Kozlov

Possibilities of the Periodic Table exploration are considered. It is shown that the four-valued logic of quantum measurements may be used for the classification of chemical elements. The application of the quantum scales with information on the position of chemical elements with the known sequence numbers inside them allows to find the new aims for metrological investigations and to develop new approaches in the quantum metrology.


2020 ◽  
Vol 48 (3) ◽  
pp. 191-191
Author(s):  
   

Dear reader, This year is full of events, anniversaries and milestones. Not only does HTHP celebrate its 50th anniversary, but also the Periodic Table of Elements has its 150th birthday. In 1869 Dimitri Mendeleyev and Lothar Meyer discovered and presented this table. In order to commemorate this breakthrough, UNESCO has declared 2019 as the “International Year of the Periodic Table of Chemical Elements”. In addition, another important event takes place in May 2019. The Conférence Générale des Poids et Mesures will put into effect the new SI system of units on May 20, 2019, the “World Metrology Day”. The introduction of this new system marks a change in paradigm: the new system relates all units to fundamental constants, rather than artefacts. The most prominent example is the definition of the new kilogram, which is now linked to the Planck constant, h. Of course, all of this has an impact on thermophysical property measurements. Therefore, we have asked Dr. Matthieu Thomas from the Laboratoire National de Métrologie et d’Essais (LNE), France, to explain shortly how this new definition works and how it was implemented. Dr. Thomas is involved in the Kibble balance project of LNE, a key element in the realisation of the new kilogram. You find his article in this issue of HTHP. The editors thank Dr. Thomas for his cooperation; we hope you will enjoy reading his article as well as the rest of this issue.


2021 ◽  
Vol 111 (5) ◽  
Author(s):  
Shin Hayashi

AbstractWe discuss some bulk-surface gapped Hamiltonians on a lattice with corners and propose a periodic table for topological invariants related to corner states aimed at studies of higher-order topological insulators. Our table is based on four things: (1) the definition of topological invariants, (2) a proof of their relation with corner states, (3) computations of K-groups and (4) a construction of explicit examples.


1996 ◽  
Vol 35 (04/05) ◽  
pp. 334-342 ◽  
Author(s):  
K.-P. Adlassnig ◽  
G. Kolarz ◽  
H. Leitich

Abstract:In 1987, the American Rheumatism Association issued a set of criteria for the classification of rheumatoid arthritis (RA) to provide a uniform definition of RA patients. Fuzzy set theory and fuzzy logic were used to transform this set of criteria into a diagnostic tool that offers diagnoses at different levels of confidence: a definite level, which was consistent with the original criteria definition, as well as several possible and superdefinite levels. Two fuzzy models and a reference model which provided results at a definite level only were applied to 292 clinical cases from a hospital for rheumatic diseases. At the definite level, all models yielded a sensitivity rate of 72.6% and a specificity rate of 87.0%. Sensitivity and specificity rates at the possible levels ranged from 73.3% to 85.6% and from 83.6% to 87.0%. At the superdefinite levels, sensitivity rates ranged from 39.0% to 63.7% and specificity rates from 90.4% to 95.2%. Fuzzy techniques were helpful to add flexibility to preexisting diagnostic criteria in order to obtain diagnoses at the desired level of confidence.


2018 ◽  
pp. 4-7
Author(s):  
S. I. Zenko

The article raises the problem of classification of the concepts of computer science and informatics studied at secondary school. The efficiency of creation of techniques of training of pupils in these concepts depends on its solution. The author proposes to consider classifications of the concepts of school informatics from four positions: on the cross-subject basis, the content lines of the educational subject "Informatics", the logical and structural interrelations and interactions of the studied concepts, the etymology of foreign-language and translated words in the definition of the concepts of informatics. As a result of the first classification general and special concepts are allocated; the second classification — inter-content and intra-content concepts; the third classification — stable (steady), expanding, key and auxiliary concepts; the fourth classification — concepts-nouns, conceptsverbs, concepts-adjectives and concepts — combinations of parts of speech.


2020 ◽  
Vol 13 (1) ◽  
pp. 71-84
Author(s):  
E.A. Grigor'eva ◽  
A.S. Buzhikeeva

Subject. This article deals with the issues of determining the market value of the trading business, taking into account a number of characteristics. Objectives. The article aims to develop certain provisions of the methodology and practice of evaluating the business of trading organizations, namely, taking into account the additional risk of inventory feasibility when calculating the discount rate. Methods. For the study, we used a systems approach, and the cognition, and economic and analytical research methods. Results. The article presents a three-tiered classification of stocks and a definition of risk based on the criteria for dividing stocks by purpose, degree of implementation, and shelf life in accordance with the scale. Based on the classification, the article offers certain recommendations for determining the discount rate when evaluating trading organizations, aimed at taking into account additional risk. Conclusions. Various evaluation procedures within the framework of traditional approaches and methods in relation to trading organizations do not take into account risk specific to this type of economic activity. The proposed methodology for calculating the discount rate for trade organizations takes into account the features of their functioning.


Sign in / Sign up

Export Citation Format

Share Document