scholarly journals Effects of controlled burn rice husk ash on geotechnical properties of the soil

2021 ◽  
Vol 52 (4) ◽  
Author(s):  
Najmun Nahar ◽  
Alex Otieno Owino ◽  
Sayful Kabir Khan ◽  
Zakaria Hossain ◽  
Noma Tamaki

Pozzolanic reactions of RHA entirely depends on controlled burning condition. The current study illustrates the effects of controlled burn rice husk ash (RHA) on the geotechnical properties of A-2-4 type soil. The compactibility, bearing capacity, compressive strength, and shear strength were investigated as the important geotechnical properties on soil with 0%, 5%, 10%, and 15% of RHA admixtures. Considering the 7-day moist curing, standard Proctor compaction tests, California Bearing Ratio (CBR) tests, Unconfined Compressive Strength (UCS) tests, Consolidated-Drained (CD) Triaxial Compression tests, and Scanning Electron Microscopy (SEM) tests were conducted on soil-RHA combinations. The test results showed that the optimum moisture content increased, but MDD reduced with the increment of RHA content. Soil with 5% RHA showed the increase of CBR (39.5%), UCS (6.0%), modulus of deformation (56.3%), cohesion (11.8%), and angle of internal friction (6.3%) compared to control specimen which indicated that the application of burnt RHA at a controlled temperature significantly enhanced the geotechnical properties of soil. SEM image on soil with 5% RHA also observed the best microstructural development.

2014 ◽  
Vol 567 ◽  
pp. 545-550 ◽  
Author(s):  
Leong Sing Wong

Peat is known to be highly compressible in nature due to its extremely high content of organic matter. As such, it is never a suitable foundation soil for construction purpose. Under such condition, it is compelling to investigate the underlying binding action of suitable materials that can be sustainably applied to stabilize the soil. The primary focus of this research article is to evaluate the effectiveness of rice husk ash as partial cement replacement in peat stabilization. Rice husk ash is basically a pozzolanic material which is produced by burning rice husk from the milling of paddy. Other than rice husk ash, Portland composite cement, calcium chloride, and silica sand were used as the materials for stabilizing the peat. An experimental based program was developed to gage the pertinent aspects that influenced the strength behavior of the stabilized peat. The strength behavior of the stabilized peat was evaluated on the basis of the results from unconfined compression tests. It was found from the test results that by partially replacing 10% of the cement with rice husk ash at an initial pressure of 50 kPa, binder dosage of 300 kg m-3, silica sand dosage of 596 kg m-3 and a curing time of 28 days, the required unconfined compressive strength of 345 kPa could be exceeded. The positive result confirmed the role of rice husk ash at imparting filler and pozzolanic effects that enhanced the strength of the stabilized peat.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3216
Author(s):  
Jin Li ◽  
Peiyuan Chen ◽  
Haibing Cai ◽  
Ying Xu ◽  
Chunchao Li

In this study, rice husk ash (RHA) was explored as a strength enhancer for mortars containing waste rubber. The effects of RHA on the flow, mechanical strength, chloride resistance, and capillary absorption of rubber mortar were investigated by substituting up to 20% cement with RHA. The experimental results showed that the incorporation of rubber into mortar could be safely achieved by adding RHA as a cement substitute by up to 20% without compromising the compressive strength of mortar. Moreover, the RHA also exerted positive effects on the enhancement of the chloride resistance as well as the capillary absorption of rubber mortars, for which 15% RHA was found to be the optimal dosage.


2015 ◽  
Vol 804 ◽  
pp. 129-132
Author(s):  
Sumrerng Rukzon ◽  
Prinya Chindaprasirt

This research studies the potential for using waste ash from industrial and agricultural by-products as a pozzolanic material. Classified fly ash (FA) and ground rice husk ash (RA) were the materials used. Water requirement, compressive strength and porosity of cement mortar were investigated. Test results indicated that FA and RA (waste ash) have a high potential to be used as a good pozzolanic material. The water requirement of mortar mix decreases with the increases in fly ash content. For ground rice husk ash (RA), the water requirement of mortar mix increases with the increases in rice husk ash content. In addition, the reduction in porosity was associated with the increase in compressive strength.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yun Yong Kim ◽  
Byung-Jae Lee ◽  
Velu Saraswathy ◽  
Seung-Jun Kwon

This paper describes the experimental investigation carried out to develop the geopolymer concrete based on alkali-activated rice husk ash (RHA) by sodium hydroxide with sodium silicate. Effect on method of curing and concentration of NaOH on compressive strength as well as the optimum mix proportion of geopolymer mortar was investigated. It is possible to achieve compressive strengths of 31 N/mm2and 45 N/mm2, respectively for the 10 M alkali-activated geopolymer mortar after 7 and 28 days of casting when cured for 24 hours at 60°C. Results indicated that the increase in curing period and concentration of alkali activator increased the compressive strength. Durability studies were carried out in acid and sulfate media such as H2SO4, HCl, Na2SO4, and MgSO4environments and found that geopolymer concrete showed very less weight loss when compared to steam-cured mortar specimens. In addition, fluorescent optical microscopy and X-ray diffraction (XRD) studies have shown the formation of new peaks and enhanced the polymerization reaction which is responsible for strength development and hence RHA has great potential as a substitute for ordinary Portland cement concrete.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 932
Author(s):  
Huu-Bang Tran ◽  
Van-Bach Le ◽  
Vu To-Anh Phan

This paper presents the experimental results of the production of Nano-SiO2 (NS) from rice husk ash (RHA) and the engineering properties of High Strength Concrete (HSC) containing various NS contents. Firstly, the mesoporous silica nanoparticles were effectively modulated from RHA using NaOH solution, and subsequently precipitated with HCl solution until the pH value reached 3. The optimum synthesis for the manufacture of SiO2 nanoparticles in the weight ratio of RHA/NaOH was 1:2.4, and the product was calcined at 550 °C for 2 h. The EDX, XRD, SEM, TEM, FT-IR, and BET techniques were used to characterize the NS products. Results revealed that the characteristics of the obtained NS were satisfactory for civil engineering materials. Secondly, the HSC was manufactured with the aforementioned NS contents. NS particles were added to HSC at various replacements of 0, 0.5, 1.0, 1.5, 2.0, and 2.5% by the mass of the binder. The water-to-binder ratio was remained at 0.3 for all mixes. The specimens were cured for 3, 7, 28, 25 days under 25 ± 2 °C and a relative humidity of 95% before testing compressive and flexural strengths. Chloride ion permeability was investigated at 28 and 56 days. Results indicated that the addition of NS dramatically enhanced compressive strength, flexural strength, chloride ion resistance, and reduced chloride ion permeability compared to control concrete. The optimal NS content was found at 1.5%, which yielded the highest strength and lowest chloride ion permeability. Next, the development of flexural and compressive strengths with an age curing of 3–28 days can be analytically described by a logarithmic equation with R2 ≥ 0.74. The ACI code was used, and the compressive strength at t-day was determined based on 28 days with R2 ≥ 0.95. The study is expected to solve the redundancy of waste RHA in southern Vietnam by making RHA a helpful additive when producing high-strength concrete and contributing meaningfully to a sustainable environment.


Author(s):  
Rasheed Abdulwahab ◽  
◽  
Samson Olalekan Odeyemi ◽  
Habeeb Temitope Alao ◽  
Toyyib Adeyinka Salaudeen ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Osama Zaid ◽  
Jawad Ahmad ◽  
Muhammad Shahid Siddique ◽  
Fahid Aslam

The production of rice is significant worldwide; the husk produced is generally used as a combustible material for the preparation of paddies, delivering energy through direct combustion as well as by gasifying. Annually, 7.4 million tons of Rice Husk Ash (RHA) is produced and poses an incredible danger to the environment, harming the land and the encompassing zone where it is unloaded. In the transformation of rice husk to ash, the ignition cycle eliminates the natural products, leaving silica-rich remains. These silica-rich remains have proven to have potential to be utilized in concrete as a limited substitution of cement to enhance the concrete compressive strength. Steel fibers’ incorporation increases the concrete tensile strength, balances out concrete samples, and changes their brittle behavior to a more ductile response. In the current study, the influence of various doses of Rice Husk Ash (RHA) used in concrete in the presence and absence of steel fibers and concrete performance has been examined. A total of nine mixes have been designed: one was a control, four were without steel fibers containing only RHA, and the last four mixed RHA with steel fibers from 0.5 to 2%. Tests with 5, 10, 15, and 20% percentages of RHA replacing the concrete have been targeted. Results have been compared with the reference samples and the reasonability of adding Rice Husk Ash to concrete has been studied. From the results, it was noted that about 10% of cement might be replaced with Rice Husk Ash mixed in with steel fibers with almost equal compressive strength. Replacing more than 15% of cement with RHA will produce concrete with a low performance in terms of strength and durability.


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
G. V. Rama Subbarao ◽  
D. Siddartha ◽  
T. Muralikrishna ◽  
K. S. Sailaja ◽  
T. Sowmya

Soil existing at a particular site may not be appropriate for construction of engineering structures. The present study made an attempt to enhance the geotechnical properties of a soil replaced with industrial wastes having pozzolanic value like rice husk ash (RHA) and fly ash (FA). Soil is replaced with RHA in 2%, 4%, and 6% to dry weight of soil. It is observed that soil replaced with 4% RHA is the optimum for the soil used in this study from geotechnical point of view. To know the influence of fly ash, soil is further replaced with 4% FA along with 4% RHA. It is found that results of soil replacement by both RHA and FA proved to be soil modification and not the improvement. Hence, a cost-effective accelerator like lime is used for further replacing the above soil-4%, RHA-4% FA mix. The optimum lime content is found to be 4%.


Author(s):  
K. O. Oriola

The evaluation of agro-industrial by-products as alternative construction materials is becoming more significant as the demand for environmentally friendly construction materials increases. In this study, the workability and compressive strength of concrete produced by combining Palm Kernel Shell (PKS) and Rice Husk Ash (RHA) was investigated. Concrete mixes using a fixed content of 15% RHA as replacement for cement and 20, 40, 60, 80 and 100% PKS as replacement for crushed granite by volume with the mix ratios of 1:1½:3, 1:2:4 and 1:3:6 were produced. The water-to-cement ratios of 0.5, 0.6 and 0.7 were used for the respective mix ratios. Concrete without PKS and RHA served as control mix. The fresh concrete workability was evaluated through slump test. The concrete hardened properties determined were the density and compressive strength. The results indicated that the workability and density of PKSC were lower than control concrete, and they decreased as the PKS content in each mix ratio was increased. The compressive strength of concrete at 90 days decreased from 27.8-13.1 N/mm2, 23.8-8.9 N/mm2and 20.6-7.6 for 1:1½:3, 1:2:4 and 1:3:6, respectively as the substitution level of PKS increased from 0-100%. However, the compressive strength of concrete increased with curing age and the gain in strength of concrete containing RHA and PKSC were higher than the control at the later age. The concrete containing 15% RHA with up to 40% PKS for 1:1½:3 and 20% PKS for 1:2:4 mix ratios satisfied the minimum strength requirements for structural lightweight aggregate concrete (SLWAC) stipulated by the relevant standards. It can be concluded that the addition of 15% RHA is effective in improving the strength properties of PKSC for eco-friendly SLWAC production..


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
M. R. Karim ◽  
M. F. M. Zain ◽  
M. Jamil ◽  
F. C. Lai

The increasing demand and consumption of cement have necessitated the use of slag, fly ash, rice husk ash (RHA), and so forth as a supplement of cement in concrete construction. The aim of the study is to develop a zero-cement binder (Z-Cem) using slag, fly ash, and RHA combined with chemical activator. NaOH, Ca(OH)2, and KOH were used in varying weights and molar concentrations. Z-Cem was tested for its consistency, setting time, flow, compressive strength, XRD, SEM, and FTIR. The consistency and setting time of the Z-Cem paste increase with increasing RHA content. The Z-Cem mortar requires more superplasticizer to maintain a constant flow of110±5% compared with OPC. The compressive strength of the Z-Cem mortar is significantly influenced by the amounts, types, and molar concentration of the activators. The Z-Cem mortar achieves a compressive strength of 42–44 MPa at 28 days with 5% NaOH or at 2.5 molar concentrations. The FTIR results reveal that molecules in the Z-Cem mortar have a silica-hydrate (Si-H) bond with sodium or other inorganic metals (i.e., sodium/calcium-silica-hydrate-alumina gel). Therefore, Z-Cem could be developed using the aforementioned materials with the chemical activator.


Sign in / Sign up

Export Citation Format

Share Document