scholarly journals Effect of salt tolerant Bacillus sp. and Pseudomonas sp. on wheat (Triticum aestivum L.) growth under soil salinity: A comparative study

2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Shobhit Raj Vimal ◽  
Jaya Gupta ◽  
Jay Shankar Singh

This study was conducted to examine the comparative effect on wheat plant health inoculated with the two different rhizobacterial strains Bacillus sp. (JG3) and Pseudomonas sp. (JG7) under soil salinity. Total seven potential salt tolerant strains were isolated from the saline soils of BBAU-Lucknow. The bacterial strains have been investigated for nitrogen fixatation, phosphate solubilization, ammonia, indole acetic acid and hydrogen cyanide production activities. Based on morphological and biochemical activities the strains JG3 was designated as Bacillus sp. and the strain JG7 was designated as Pseudomonas sp. Both the strains witness positive for the different plant growth promoting traits. In comparison of strain JG7, strain JG3 inoculated wheat seeds enhance plant height by 32.32%, root length by 37.84%, fresh weight by 28.2% and dry weight by 15.51% in FYM amended soils. We observe in this study that seeds treated with Bacillus sp. found significantly effective in plant growth promotion compared to Pseudomonas sp. in saline soil. Based on the comparative experimental study reported herein, it is pointedly observed that the use of salt tolerant PGPRs are effective for facilitating plant health in salt stress environments

2021 ◽  
Vol 22 (3) ◽  
pp. 441-449
Author(s):  
Pradeep Kumar ◽  
Sandeep Kumar ◽  
R.C. Dubey

Plant growth-promoting bacterial strains (LEP1-LEP31) were isolated from rhizosphere of Lycopersicon esculentum L. (Tomato) and screened for their plant growth promoting (PGP) activities. On the basis of morphological, physiological, biochemical, carbon source utilization and molecular characterization, these strains were identified as Pseudomonas sp., Azotobacter sp. and Bacillus sp. For antagonistic activities all the strains were subject to the chitinase activities by the development of clear halo around the inoculated bacterial spots when loaded on chitin (0.2%) supplemented mediumBased on pot and field trial results of individual strains and consortium application, it may be concluded that all the three strains i.e. Pseudomonas sp. LEP17, Azotobacter sp. strain LEP21 and Bacillus sp. strain LEP25 showed plant growth promoting effects. The growth promotion provided by these strains was apparently related to improve shoot and root development, which resulted in better nutrient uptake capability and suppression of plant pathogen. All these three strains were superior in this regard because they provided the best and most consistent effects on growth and yield of L. esculentum. All these strains Pseudomonas sp. LEP17, Azotobacter sp. strain LEP21, Bacillus sp. strain LEP25 and their consortium seems to be suitable for use as a plant growth promoting and improvement of growth and yield


2019 ◽  
Vol 67 (4) ◽  
Author(s):  
Felipe Romero-Perdomo ◽  
Jhonnatan Ocampo-Gallego ◽  
Mauricio Camelo-Rusinque ◽  
Ruth Bonila

In this study, we aimed at examining the potential to stimulate growth in Pennisetum clandestinum using four isolated bacterial strains from soils obtained from a Colombian tropical silvopastoral system. We previously identified genetically the strains and characterized two plant growth promotion activities. We found that the four bacterial strains were phylogenetically associated with Klebsiella sp. (strains 28P and 35P), Beijerinka sp. (37L) and Achromobacter xylosoxidans (E37), based on partial 16S rRNA gene sequencing. Moreover, the in vitro biochemical assays demonstrated that the strains exhibited some plant growth promotion mechanisms such as 1-aminocyclopropane-1-carboxylic acid deaminase activity and indole compound synthesis. Notably, bacterial inoculation under greenhouse conditions showed a positive influence on P. clandestinum growth. We found a significant (p < 0.05) effect on root and shoot length, and shoot dry weight. Shoot length increased by 52% and 30% with 37L and 35P, respectively, compared to those without inoculation treatment. Similarly, the use of 37L and 28P raised shoot dry weight values by 170% and 131%, respectively. In root development, inoculation with strains 37L and E37 increased root length by 134% and 100%, respectively. Beijerinckia sp. 37L was the most effective of the four strains at increasing P. clandestinum biomass and length.


Author(s):  
Mathipriya Shanmugavelu ◽  
Ganesan Sevugaperumal

The commercial production of mushrooms generates a co-product, a virtually inexhaustible supply of spent mushroom substrate (SMS). It represents an ideal growth medium for plants and plant disease suppressive quality. Here we discussed about the contaminated microbial flora of SMS, potential antifungal and plant growth promoting activities, the results of these findings were also discussed in relation to the usage of SMS as a potential product for organic farming. SMS contained moisture content 72%, EC 1.75 mmho.cm−1 and had pH of 6.1. The cellulose and hemicellulose content of paddy straw substrate were 30.25%, 23.18% and 15.31% dry weight respectively. Growth in terms of root and shoot weight of the seedlings of green gram, black gram, tomato and chili were significantly higher when grown in 60% SMS amended soil. Spent mushroom compost from Pleurotus eous used in this study harbored bacterial population including, Bacillus sp., Clostridium sp., Pseudomonas sp. and E. coli. Bacterial isolate B1 was identified as Bacillus sp., isolate B2 was identified as Clostridium sp., isolate B3 as Pseudomonas sp. and B4 as Escherichia coli. These bacterial strains showed significant antagonistic activity against soil borne pathogenic fungi viz., Fusarium sp., Alternaria sp., Phytophthora sp. and Aspergillus sp.


2014 ◽  
Vol 32 (3) ◽  
pp. 149-154 ◽  
Author(s):  
R. Murphey Coy ◽  
David W. Held ◽  
Joseph W. Kloepper

Plant growth-promoting rhizobacteria (PGPR) are non-pathogenic, beneficial bacteria that colonize seeds and roots of plants and enhance plant growth. Although there has been extensive PGPR research with agronomic crops, there has been little emphasis on development of PGPR for grasses in pastures or as turf. Accordingly, experiments were conducted to evaluate novel bacterial inoculants for growth promotion in ‘Tifway’ hybrid bermudagrass. Replicated laboratory and greenhouse experiments evaluated effects of various PGPR mixtures, each with 3 to 5 PGPR strains and applied as weekly root inoculations, in comparison to nontreated plants. Growth promotion was assessed by measuring foliar growth from 3 to 8 wk and root growth at 8 wk after the first treatment. In all experiments, at least one bacterial treatment of bermudagrass resulted in significantly increased top growth and greater root growth (length, surface area, volume, or dry weight). PGPR blends 20 and MC3 caused the greatest growth promotion of roots and shoots. These results suggest that the bacterial strains could be used in strategies to reduce nitrogen or water inputs to turf.


2020 ◽  
Vol 23 (02) ◽  
pp. 241-252
Author(s):  
Sabir Hussain

Textile industry is a continuous source of colored wastewater. This wastewater frequently used for irrigation purpose in many underdeveloped countries including Pakistan. In this study, we isolated the bacterial strains capable of decolorizing dyes and promote the plant growth. Hence to decolorize the reactive red 120 (RR120), the strain WS-D/183 was optimized following response surface methodology (RSM) based modeling approach. Moreover, strain WS-D/183 was also assessed for plant growth promoting characteristics. Results revealed that the strain WS-D/183 showed a good potential for decolorization of structurally diverse types of azo dyes on reaction with a mixture of heavy metal ions (Cr6+, Cd2+, Zn2+, Pb2+). This strain concurrently removed reactive dyes (100 mg L-1 ) and reduced Cr(VI). Results showed that each dye was decolorized up to 90% except reactive yellow-2 which was decolorized up to 57.4%. Furthermore, the bacterium reduced Cr(VI) by 41 to 95% along with concurrent decolorization of RR120. This bacterium was also found to carry plant growth promoting traits including inorganic phosphate solubilization (497.6 ± 14.8 µg mL-1 ) and indole-3-acetic acid production (21.07 ± 0.9 µg mL-1 ). A phytotoxicity evaluation study indicated that irrigation of mung bean [Vigna radiata (L.) Wilczek] with RR120, Cr(VI) and RR120+Cr(VI) contaminated waters treated with the strain WS-D/183 enhanced germination along with plumule and radical length of seedlings. Results suggested that Pseudomonas sp. WS-D/183 is a valuable addition to the bioresources, which can be used to devise textile wastewater treatment strategies as well as for integrated bioremediation and plant growth promotion in agricultural soils contaminated with textile wastewaters. © 2020 Friends Science Publishers


Pathogens ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 682
Author(s):  
Bruno Henrique Silva Dias ◽  
Sung-Hee Jung ◽  
Juliana Velasco de Castro Oliveira ◽  
Choong-Min Ryu

Plant growth-promoting rhizobacteria (PGPR) associated with plant roots can trigger plant growth promotion and induced systemic resistance. Several bacterial determinants including cell-wall components and secreted compounds have been identified to date. Here, we review a group of low-molecular-weight volatile compounds released by PGPR, which improve plant health, mostly by protecting plants against pathogen attack under greenhouse and field conditions. We particularly focus on C4 bacterial volatile compounds (BVCs), such as 2,3-butanediol and acetoin, which have been shown to activate the plant immune response and to promote plant growth at the molecular level as well as in large-scale field applications. We also disc/ uss the potential applications, metabolic engineering, and large-scale fermentation of C4 BVCs. The C4 bacterial volatiles act as airborne signals and therefore represent a new type of biocontrol agent. Further advances in the encapsulation procedure, together with the development of standards and guidelines, will promote the application of C4 volatiles in the field.


2021 ◽  
Vol 12 (2) ◽  
pp. 480-490
Author(s):  
Ahsanul Salehin ◽  
Ramesh Raj Puri ◽  
Md Hafizur Rahman Hafiz ◽  
Kazuhito Itoh

Colonization of a biofertilizer Bacillus sp. OYK strain, which was isolated from a soil, was compared with three rhizospheric and endophytic Bacillus sp. strains to evaluate the colonization potential of the Bacillus sp. strains with a different origin. Surface-sterilized seeds of tomato (Solanum lycopersicum L. cv. Chika) were sown in the sterilized vermiculite, and four Bacillus sp. strains were each inoculated onto the seed zone. After cultivation in a phytotron, plant growth parameters and populations of the inoculants in the root, shoot, and rhizosphere were determined. In addition, effects of co-inoculation and time interval inoculation of Bacillus sp. F-33 with the other endophytes were examined. All Bacillus sp. strains promoted plant growth except for Bacillus sp. RF-37, and populations of the rhizospheric and endophytic Bacillus sp. strains were 1.4–2.8 orders higher in the tomato plant than that of Bacillus sp. OYK. The plant growth promotion by Bacillus sp. F-33 was reduced by co-inoculation with the other endophytic strains: Klebsiella sp. Sal 1, Enterobacter sp. Sal 3, and Herbaspirillum sp. Sal 6., though the population of Bacillus sp. F-33 maintained or slightly decreased. When Klebsiella sp. Sal 1 was inoculated after Bacillus sp. F-33, the plant growth-promoting effects by Bacillus sp. F-33 were reduced without a reduction of its population, while when Bacillus sp. F-33 was inoculated after Klebsiella sp. Sal 1, the effects were increased in spite of the reduction of its population. Klebsiella sp. Sal 1 colonized dominantly under both conditions. The higher population of rhizospheric and endophytic Bacillus sp. in the plant suggests the importance of the origin of the strains for their colonization. The plant growth promotion and colonization potentials were independently affected by the co-existing microorganisms.


2015 ◽  
Vol 3 (3) ◽  
pp. 552-560 ◽  
Author(s):  
Mohamed A.M. El-Awady ◽  
Mohamed M. Hassan ◽  
Yassin M. Al-Sodany

This study was designed to isolate and characterize endophytic and rhizospheric bacteria associated with the halophyte plant Sesuvium verrucosum, grown under extreme salinity soil in Jeddah, Saudi Arabia. The plant growth promotion activities of isolated bacterial were evaluated in vitro. A total of 19 salt tolerant endophytic and rhizospheric bacterial isolates were obtained and grouped into six according to genetic similarity based on RAPD data. These six isolates were identified by amplification and partial sequences of 16S rDNA as Enterobacter cancerogenus,Vibrio cholerae, Bacillus subtilis, Escherichia coli and two Enterobacter sp. Isolates were then grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, and production of phytohormones such as indole-3-acetic acid, as well as 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. While, All of the six strains were negative for ACC deaminaseactivity, two isolates showed Nitrogen fixation activity, three isolates produce the plant hormone (Indole acetic acid) and two isolates have the activity of solubiliztion of organic phosphate. Among the six isolates, the isolate (R3) from the soil around the roots is able to perform the three previous growth promoting possibilities together and it is ideal for use in promoting the growth of plants under the high salinity conditions. This isolate is candidate to prepare a friendly biofertelizer that can be used for the improvement of the crops performance under salinity conditions.Int J Appl Sci Biotechnol, Vol 3(3): 552-560


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 888
Author(s):  
Giorgia Novello ◽  
Patrizia Cesaro ◽  
Elisa Bona ◽  
Nadia Massa ◽  
Fabio Gosetti ◽  
...  

The reduction of chemical inputs due to fertilizer and pesticide applications is a target shared both by farmers and consumers in order to minimize the side effects for human and environmental health. Among the possible strategies, the use of biostimulants has become increasingly important as demonstrated by the fast growth of their global market and by the increased rate of registration of new products. In this work, we assessed the effects of five bacterial strains (Pseudomonas fluorescens Pf4, P. putida S1Pf1, P. protegens Pf7, P. migulae 8R6, and Pseudomonas sp. 5Vm1K), which were chosen according to their previously reported plant growth promotion traits and their positive effects on fruit/seed nutrient contents, on a local onion cultivar and on zucchini. The possible variations induced by the inoculation with the bacterial strains on the onion nutritional components were also evaluated. Inoculation resulted in significant growth stimulation and improvement of the mineral concentration of the onion bulb, induced particularly by 5Vm1K and S1Pf1, and in different effects on the flowering of the zucchini plants according to the bacterial strain. The present study provides new information regarding the activity of the five plant growth-promoting bacteria (PGPB) strains on onion and zucchini, two plant species rarely considered by the scientific literature despite their economic relevance.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Geetha Rajendran ◽  
Maheshwari H. Patel ◽  
Sanket J. Joshi

One of the ways to increase the competitive survivability of rhizobial biofertilizers and thus achieve better plant growth under such conditions is by modifying the rhizospheric environment or community by addition of nonrhizobial nodule-associated bacteria (NAB) that cause better nodulation and plant growth when coinoculated with rhizobia. A study was performed to investigate the most commonly associated nodule-associated bacteria and the rhizospheric microorganisms associated with theFenugreek(Trigonella foenum-graecum) plant. Isolation of nonrhizobial isolates from root nodules ofFenugreekwas carried out along with the rhizospheric isolates. About 64.7% isolates obtained fromFenugreeknodules were gram-negative coccobacilli, 29.41% were gram-positive bacilli, and all rhizospheric isolates except one were gram-positive bacilli. All the isolates were characterized for their plant growth promoting (PGP) activities. Two of the NAB isolates M2N2c and B1N2b (Exiguobacterium sp.) showed maximum positive PGP features. Those NAB isolates when coinoculated with rhizobial strain—S. meliloti, showed plant growth promotion with respect to increase in plant’s root and shoot length, chlorophyll content, nodulation efficiency, and nodule dry weight.


Sign in / Sign up

Export Citation Format

Share Document