scholarly journals Tissue-specific cancer stem cells: reality or a mirage?

2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Tarik Regad

<em>Equo ne credite, Teucri. Quidquid id est, timeo Danaos et dona ferentes</em> (<em>Do not trust the horse, Trojans! Whatever it is, I fear the Greeks, even bringing gifts</em>) said Laocoön (Virgil, the <em>Aeneid book</em>). Cancer stem cells (CSCs) are populations of cancer cells that can be found in different cancerous tissues and organs, and have properties that are similar to normal stem cells. They are thought to be chemo-resistant and radioresistant and are therefore responsible for cancer recurrence and relapse encountered in cancer patients following chemotherapy and radiotherapy. Although significant progress has been made to characterise CSCs, it is becoming clear that the failure of cancer therapies directed against certain types of aggressive cancers is due to the presence of these malignant cells. Cancer therapies that will rely on a combination of CSCs-targeted therapies, chemotherapy and radiotherapy are more likely to succeed in eradicating aggressive cancers and prevent recurrence in treated patients.

2015 ◽  
Vol 113 (4) ◽  
pp. 960-965 ◽  
Author(s):  
Sarah K. C. Cheung ◽  
Po-Kai Chuang ◽  
Han-Wen Huang ◽  
Wendy W. Hwang-Verslues ◽  
Candy Hsin-Hua Cho ◽  
...  

The discovery of cancer stem cells (CSCs), which are responsible for self-renewal and tumor growth in heterogeneous cancer tissues, has stimulated interests in developing new cancer therapies and early diagnosis. However, the markers currently used for isolation of CSCs are often not selective enough to enrich CSCs for the study of this special cell population. Here we show that the breast CSCs isolated with CD44+CD24-/loSSEA-3+ or ESAhiPROCRhiSSEA-3+ markers had higher tumorigenicity than those with conventional markers in vitro and in vivo. As few as 10 cells with CD44+CD24-/loSSEA-3+ formed tumor in mice, compared with more than 100 cells with CD44+CD24-/lo. Suppression of SSEA-3 expression by knockdown of the gene encoding β-1,3-galactosyltransferase 5 (β3GalT5) in the globo-series pathway, led to apoptosis in cancer cells specifically but had no effect on normal cells. This finding is further supported by the analysis of SSEA-3 and the two related globo-series epitopes SSEA4 and globo-H in stem cells (embryonic stem cells and induced pluripotent stem cells) and various normal and cancer cells, and by the antibody approach to target the globo-series glycans and the late-stage clinical trials of a breast cancer vaccine.


2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Kandasamy Ashokachakkaravarthy ◽  
Biju Pottakkat

Hepatocellular carcinoma represents one of the most aggressive cancers with high recurrence rates. The high recurrence is a major problem in the management of this disease. Cancer stem cells (CSCs) are often regarded as the basis of cancer recurrence. The anti-proliferative therapy kills the proliferating cells but induces mitotic quiescence in CSCs which remain as residual dormant CSCs. Later on, withdrawal of treatment reactivates the residual CSCs from dormancy to produce new cancer cells. The proliferation of these newly formed cancer cells initiates new tumor formation in the liver leading to tumor recurrence. HCC cells evade the immune surveillance via modulating the key immune cells by alpha feto-protein (AFP) secreted from CSCs or hepatic progenitor cells. This AFP mediated immune evasion assists in establishing new tumors by cancer cells in the liver. In this review, we will summarise the CSC mechanisms of recurrence, mitotic quiescence, dormancy and reactivation of CSCs, metastasis and immune evasion of hepatocellular carcinoma.


Author(s):  
Cord Naujokat ◽  
Dwight L. McKee

: Cancer stem cells (CSCs) constitute a subpopulation of tumor cells that possess self-renewal and tumor initiation capacity, and the ability to give rise to the heterogeneous lineages of cancer cells that comprise the tumor. CSCs exhibit intrinsic mechanisms of resistance to virtually all conventional cancer therapeutics, allowing them to survive current cancer therapies and to initiate tumor recurrence and metastasis. Different pathways and mechanisms that confer resistance and survival of CSCs, including activation of the Wnt/β-catenin, Sonic Hedgehog, Notch, PI3K/Akt/mTOR and STAT3 signaling pathways, expression of aldehyde dehydrogenase 1 (ALDH1) and oncogenic microRNAs, and acquisition of epithelial-mesenchymal transition (EMT), have been identified recently. Certain phytochemicals, in particular curcumin, epigallocatechin-3-gallate (EGCG), sulforaphane, resveratrol and genistein have been shown to interfere with these intrinsic CSC pathways in vitro and in human xenograft mice, leading to elimination of CSCs. Moreover, recent clinical trials have demonstrated therapeutic efficacy of the five phytochemicals, alone or in combination with modern cancer therapeutics, and in various types of cancer. Since current cancer therapies fail to eradicate CSCs, leading to cancer recurrence and progression, targeting of CSCs with phytotochemicals such as curcumin, EGCG, sulforaphane, resveratrol and genistein, combined with each other and/or in combination with conventional cytotoxic drugs and novel cancer therapeutics, may offer a novel therapeutic strategy against cancer.


2013 ◽  
Vol 31 (15_suppl) ◽  
pp. e16542-e16542
Author(s):  
Prattusha Sengupta ◽  
Sudeshna Gangopadhyay ◽  
Saubhik Sengupta ◽  
Ujjal Kanti Ray ◽  
Ashis Mukhopadhyay

e16542 Background: Invasive and mesenchymal property of Ovarian Cancer Stem Cells (OCSCs)with CD44+/CD133+has made them promising target for targeted treatment. Chemotherapy treatment uses medicine to weaken and destroy cancer cells in body, including cells at original cancer site and any cancer cells that may have spread to another part of body. Chemotherapeutic drugs for advanced chemo-resistant ovarian cancer are yet to be well defined. Combination of drugs is also not fully known. Our objective is to define chemotherapeutic drugs and its action in OCSC which is the major reason for chemo resistance in case of advanced chemo-resistant ovarian cancer patients. Methods: A total of twenty biopsy proven advanced chemo-resistant ovarian cancer patients in the age group of 22-36 years were selected randomly and tested for CD44/CD133 via flow cytometry. Isolated OCSCs were cultured for ex vivo drug sensitivity towards platinum, anthracyclin, docetaxel, rapamycin, sunitinib, sorafenib and gefitinib. Correlation was drawn between cell differentiations, % of stem cells and drug response. Accordingly chemotherapy was designed for a particular patient. Results: We detected OCSCs in 90% of cases. Among positive samples ex vivo drug sensitivity was seen in 4(20%) to rapamycin, 1(5%) to sunitinib, 1(5%) to sorafenib, 1(5%) to gefitinib, 3(15%) to platinum, 1(5%) to anthracyclin, 1(5%) to docetaxel and rest showed no sensitivity to any drug. Conclusions: Thus primary aim to target OCSCs at onset of tumors in ovarian cancer patients to control metastasis and relapse of disease was somewhat obtained. Most interestingly, we found that the chemotherapeutic drugs which were less prescribed for ovarian cancer showed greater sensitivity in comparison to the widely used ones. We like to do animal model study followed by phase I, II and III human clinical trial to establish our hypothesis for better management of chemo-resistant ovarian cancer.


2020 ◽  
Vol 6 (2) ◽  
pp. 21
Author(s):  
Muhammad Ali ◽  
Fatima Ali ◽  
Nadia Wajid

Since the cancer stem cells (CSC) have been identified in 1997 by Bonnet and Dick, more than 100,000 papers have been published on the CSC. Huge research on cancer stem cells helped the scientists to rethink about the cancer therapeutics as classic way of chemotherapy is ineffective because chemotherapy failed to kill these cells, the only reason of cancer relapse. The cancer theory of stem cells is one of the most trending theory in stem cells and cancer biology focusing on the understanding of biology of cancer cells for an enhanced and improved therapeutic approaches should be applied to cure the cancer. This mini-review is a short overview on the role of organ specific cancer stem cells in the organ specific cancer progression.


Cells ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1896 ◽  
Author(s):  
Kevin Dzobo ◽  
Dimakatso Alice Senthebane ◽  
Chelene Ganz ◽  
Nicholas Ekow Thomford ◽  
Ambroise Wonkam ◽  
...  

Despite great strides being achieved in improving cancer patients’ outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis.


Oncogenesis ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Rida Iftikhar ◽  
Harrison M. Penrose ◽  
Angelle N. King ◽  
Joshua S. Samudre ◽  
Morgan E. Collins ◽  
...  

AbstractObesity is a worldwide epidemic associated with increased risk and progression of colon cancer. Here, we aimed to determine the role of adipose triglyceride lipase (ATGL), responsible for intracellular lipid droplet (LD) utilization, in obesity-driven colonic tumorigenesis. In local colon cancer patients, significantly increased ATGL levels in tumor tissue, compared to controls, were augmented in obese individuals. Elevated ATGL levels in human colon cancer cells (CCC) relative to non-transformed were augmented by an obesity mediator, oleic acid (OA). In CCC and colonospheres, enriched in colon cancer stem cells (CCSC), inhibition of ATGL prevented LDs utilization and inhibited OA-stimulated growth through retinoblastoma-mediated cell cycle arrest. Further, transcriptomic analysis of CCC, with inhibited ATGL, revealed targeted pathways driving tumorigenesis, and high-fat-diet obesity facilitated tumorigenic pathways. Inhibition of ATGL in colonospheres revealed targeted pathways in human colonic tumor crypt base cells (enriched in CCSC) derived from colon cancer patients. In CCC and colonospheres, we validated selected transcripts targeted by ATGL inhibition, some with emerging roles in colonic tumorigeneses (ATG2B, PCK2, PGAM1, SPTLC2, IGFBP1, and ABCC3) and others with established roles (MYC and MUC2). These findings demonstrate obesity-promoted, ATGL-mediated colonic tumorigenesis and establish the therapeutic significance of ATGL in obesity-reinforced colon cancer progression.


2019 ◽  
Vol 19 (15) ◽  
pp. 1796-1808 ◽  
Author(s):  
Plabon K. Das ◽  
Tasnim Zahan ◽  
Md. Abdur Rakib ◽  
Jahan A. Khanam ◽  
Suja Pillai ◽  
...  

Background:Cancer Stem Cells (CSCs) are the subpopulation of cancer cells which are directly involved in drug resistance, metastases to distant organ and cancer recurrence.Methods:A systematic literature search was conducted through various electronic databases including, Pubmed, Scopus, Google scholar using the keywords "cancer stem cells" and "natural compounds" in the present study. Articles published between 1999 and 2019 were reviewed. All the expositions concerning CSCs associated cancer pathogenesis and therapy resistance, as well as targeting these properties of CSCs by natural compounds were selected for the current study.Results:Natural compounds have always been thought as a rich source of biologically active principles, which target aberrantly activated signaling pathways and other modalities of CSCs, while tethering painful side effects commonly involved in the first-line and second-line chemo-radiotherapies. In this review, we have described the key signaling pathways activated in CSCs to maintain their survival and highlighted how natural compounds interrupt these signaling pathways to minimize therapy resistance, pathogenesis and cancer recurrence properties of CSCs, thereby providing useful strategies to treat cancer or aid in cancer therapy improvement. Like normal stem cells, CSCs rely on different signaling pathways and other properties for their maintenance. Therefore, the success of cancer treatment depends on the development of proper anti-neoplastic drugs capable of intercepting those signaling pathways as well as other properties of CSCs in order to eradicate this evasive subpopulation of cancer cells.Conclusion:Compounds of natural origin might act as an outstanding source to design novel therapies against cancer stem cells.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Shijie Ding ◽  
Chunbao Li ◽  
Ninghui Cheng ◽  
Xiaojiang Cui ◽  
Xinglian Xu ◽  
...  

Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs) has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs). We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.


Sign in / Sign up

Export Citation Format

Share Document