scholarly journals Foot Structure and Muscle Reaction Time to a Simulated Ankle Sprain

2013 ◽  
Vol 48 (3) ◽  
pp. 326-330 ◽  
Author(s):  
Joanna R. Denyer ◽  
Naomi L. A. Hewitt ◽  
Andrew C. S. Mitchell

Context: Foot structure has been shown to affect aspects of neuromuscular control, including postural stability and proprioception. However, despite an association between pronated and supinated foot structures and the incidence of lateral ankle sprains, no one to our knowledge has measured muscle reaction time to a simulated ankle-sprain mechanism in participants with different foot structures. Objective: To determine whether pronated or supinated foot structures contribute to neuromuscular deficits as measured by muscle reaction time to a simulated ankle-sprain mechanism. Design: Cross-sectional study. Setting: University biomechanics laboratory. Patients or Other Participants: Thirty volunteers were categorized into 3 groups according to navicular-drop–height measures. Ten participants (4 men, 6 women) had neutral feet (navicular-drop height = 5–9 mm), 10 participants (4 men, 6 women) had pronated feet (navicular-drop height ≥ 10 mm), and 10 participants (4 men, 6 women) had supinated feet (navicular-drop height ≤ 4 mm). Intervention(s): Three perturbations on a standing tilt platform simulating the mechanics of an inversion and plantar-flexion ankle sprain. Main Outcome Measure(s): Muscle reaction time in milliseconds of the peroneus longus, tibialis anterior, and gluteus medius to the tilt-platform perturbation. Results: Participants with pronated or supinated foot structures had slower peroneus longus reaction times than participants with neutral feet (P = .01 and P = .04, respectively). We found no differences for the tibialis anterior or gluteus medius. Conclusions: Foot structure influenced peroneus longus reaction time. Further research is required to establish the consequences of slower peroneal reaction times in pronated and supinated foot structures. Researchers investigating lower limb muscle reaction time should control for foot structure because it may influence results.

2015 ◽  
Vol 50 (7) ◽  
pp. 697-703 ◽  
Author(s):  
Peter K. Thain ◽  
Christopher M. Bleakley ◽  
Andrew C. S. Mitchell

Context Cryotherapy is used widely in sport and exercise medicine to manage acute injuries and facilitate rehabilitation. The analgesic effects of cryotherapy are well established; however, a potential caveat is that cooling tissue negatively affects neuromuscular control through delayed muscle reaction time. This topic is important to investigate because athletes often return to exercise, rehabilitation, or competitive activity immediately or shortly after cryotherapy. Objective To compare the effects of wet-ice application, cold-water immersion, and an untreated control condition on peroneus longus and tibialis anterior muscle reaction time during a simulated lateral ankle sprain. Design Randomized controlled clinical trial. Setting University of Hertfordshire human performance laboratory. Patients or Other Participants A total of 54 physically active individuals (age = 20.1 ± 1.5 years, height = 1.7 ± 0.07 m, mass = 66.7 ± 5.4 kg) who had no injury or history of ankle sprain. Intervention(s) Wet-ice application, cold-water immersion, or an untreated control condition applied to the ankle for 10 minutes. Main Outcome Measure(s) Muscle reaction time and muscle amplitude of the peroneus longus and tibialis anterior in response to a simulated lateral ankle sprain were calculated. The ankle-sprain simulation incorporated a combined inversion and plantar-flexion movement. Results We observed no change in muscle reaction time or muscle amplitude after cryotherapy for either the peroneus longus or tibialis anterior (P > .05). Conclusions Ten minutes of joint cooling did not adversely affect muscle reaction time or muscle amplitude in response to a simulated lateral ankle sprain. These findings suggested that athletes can safely return to sporting activity immediately after icing. Further evidence showed that ice can be applied before ankle rehabilitation without adversely affecting dynamic neuromuscular control. Investigation in patients with acute ankle sprains is warranted to assess the clinical applicability of these interventions.


2015 ◽  
Vol 24 (3) ◽  
pp. 293-299 ◽  
Author(s):  
Kazem Malmir ◽  
Gholam Reza Olyaei ◽  
Saeed Talebian ◽  
Ali Ashraf Jamshidi

Context:Cyclic movements and muscle fatigue may result in musculoskeletal injuries by inducing changes in neuromuscular control. Ankle frontal-plane neuromuscular control has rarely been studied in spite of its importance.Objective:To compare the effects of peroneal muscle fatigue and a cyclic passive-inversion (CPI) protocol on ankle neuromuscular control during a lateral hop.Design:Quasi-experimental, repeated measures.Setting:University laboratory.Participants:22 recreationally active, healthy men with no history of ankle sprain or giving way.Interventions:Participants performed a lateral hop before and after 2 interventions on a Biodex dynamometer. They were randomly assigned to intervention order and interventions were 1 wk apart. A passive intervention included 40 CPIs at 5°/s through 80% of maximum range of motion, and a fatigue intervention involved an isometric eversion at 40% of the maximal voluntary isometric contraction until the torque decreased to 50% of its initial value.Main Outcome Measures:Median frequency of the peroneus longus during the fatigue protocol, energy absorption by the viscoelastic tissues during the CPI protocol, and feedforward onset and reaction time of the peroneus longus during landing.Results:A significant fall in median frequency (P < .05) and a significant decrease in energy absorption (P < .05) confirmed fatigue and a change in viscoelastic behavior, respectively. There was a significant main effect of condition on feedforward onset and reaction time (P < .05). No significant main effect of intervention or intervention × condition interaction was noted (P > .05). There was a significant difference between pre- and postintervention measures (P < .0125), but no significant difference was found between postintervention measures (P > .0125).Conclusions:Both fatigue and the CPI may similarly impair ankle neuromuscular control. Thus, in prolonged sports competitions and exercises, the ankle may be injured due to either fatigue or changes in the biomechanical properties of the viscoelastic tissues.


2016 ◽  
Vol 51 (8) ◽  
pp. 629-636 ◽  
Author(s):  
Kathryn A. Webster ◽  
Brian G. Pietrosimone ◽  
Phillip A. Gribble

Context: Ankle instability is a common condition in physically active individuals. It often occurs during a jump landing or lateral motion, particularly when participants are fatigued. Objective: To compare muscle activation during a lateral hop prefatigue and postfatigue in individuals with or without chronic ankle instability (CAI). Design: Cross-sectional study. Setting: Sports medicine research laboratory. Patients or Other Participants: A total of 32 physically active participants volunteered for the study. Sixteen participants with CAI (8 men, 8 women; age = 20.50 ± 2.00 years, height = 172.25 ± 10.87 cm, mass = 69.13 ± 13.31 kg) were matched with 16 control participants without CAI (8 men, 8 women; age = 22.00 ± 3.30 years, height = 170.50 ± 9.94 cm, mass = 69.63 ± 14.82 kg) by age, height, mass, sex, and affected side. Intervention(s): Electromyography of the tibialis anterior, peroneus longus, gluteus medius, and gluteus maximus was measured before and after a functional fatigue protocol. Main Outcome Measure(s): Activation of 4 lower extremity muscles was measured 200 milliseconds before and after landing from a lateral hop. Results: We observed no interactions. The group main effects for the peroneus longus demonstrated higher muscle activation in the CAI group (52.89% ± 11.36%) than in the control group (41.12% ± 11.36%) just before landing the lateral hop (F1,30 = 8.58, P = .01), with a strong effect size (d = 1.01). The gluteus maximus also demonstrated higher muscle activation in the CAI group (45.55% ± 12.08%) than in the control group (36.81% ± 12.08%) just before landing the lateral hop (F1,30 = 4.19, P = .049), with a moderate effect size (d = 0.71). We observed a main effect for fatigue for the tibialis anterior, with postfatigue activation higher than prefatigue activation (F1,30 = 7.45, P = .01). No differences were present between groups for the gluteus medius. Conclusions: Our results support the presence of a centralized feed-forward neuromuscular alteration in patients with CAI, not only in the ankle-joint muscles but also in the proximal hip muscles. These results may have implications for rehabilitation programs in these patients.


Author(s):  
Iman Akef Khowailed ◽  
Haneul Lee

AbstractThe purpose of this study was to examine the differences in neuromuscular control and mechanical properties of the ankle-stabilizing muscles between men and women, and during different phases of menstrual cycle in women. Fifteen women with regular menstrual cycles and 17 male counterparts were included in this study. Electromyographic signals were recorded from the peroneus longus (PL) and tibialis anterior (TA) muscles while performing three balance tasks. Muscle tone, stiffness, and elasticity of muscles were measured using a MyotonPRO in the resting position. Outcomes were measured twice (ovulation and early follicular phases) for women, while measurements were acquired only once for men. Significantly higher tibialis anterior-peroneus longus co-contraction (TA/PL ratio) was observed in all balance tasks in women than in men (p< 0.05); however, significant differences between phases of the menstrual cycle were noted only in the 2 most difficult tasks (p< 0.05). A similar pattern was observed in the postural sway. These results highlight the importance of sex-specific hormonal effects on neuromuscular control and mechanical properties, and as well as the differences during phases of the menstrual cycle. These insights assume significance in the context of developing neuromuscular strategies for the purpose of preventing lower extremity injuries during sports activities.


GeroPsych ◽  
2011 ◽  
Vol 24 (4) ◽  
pp. 169-176 ◽  
Author(s):  
Philippe Rast ◽  
Daniel Zimprich

In order to model within-person (WP) variance in a reaction time task, we applied a mixed location scale model using 335 participants from the second wave of the Zurich Longitudinal Study on Cognitive Aging. The age of the respondents and the performance in another reaction time task were used to explain individual differences in the WP variance. To account for larger variances due to slower reaction times, we also used the average of the predicted individual reaction time (RT) as a predictor for the WP variability. Here, the WP variability was a function of the mean. At the same time, older participants were more variable and those with better performance in another RT task were more consistent in their responses.


2006 ◽  
Vol 20 (3) ◽  
pp. 186-194 ◽  
Author(s):  
Susanne Mayr ◽  
Michael Niedeggen ◽  
Axel Buchner ◽  
Guido Orgs

Responding to a stimulus that had to be ignored previously is usually slowed-down (negative priming effect). This study investigates the reaction time and ERP effects of the negative priming phenomenon in the auditory domain. Thirty participants had to categorize sounds as musical instruments or animal voices. Reaction times were slowed-down in the negative priming condition relative to two control conditions. This effect was stronger for slow reactions (above intraindividual median) than for fast reactions (below intraindividual median). ERP analysis revealed a parietally located negativity of the negative priming condition compared to the control conditions between 550-730 ms poststimulus. This replicates the findings of Mayr, Niedeggen, Buchner, and Pietrowsky (2003) . The ERP correlate was more pronounced for slow trials (above intraindividual median) than for fast trials (below intraindividual median). The dependency of the negative priming effect size on the reaction time level found in the reaction time analysis as well as in the ERP analysis is consistent with both the inhibition as well as the episodic retrieval account of negative priming. A methodological artifact explanation of this effect-size dependency is discussed and discarded.


2004 ◽  
Vol 9 (1) ◽  
pp. 24-31 ◽  
Author(s):  
Sybille Rockstroh ◽  
Karl Schweizer

Effects of four retest-practice sessions separated by 2 h intervals on the relationship between general intelligence and four reaction time tasks (two memory tests: Sternberg's memory scanning, Posner's letter comparison; and two attention tests: continuous attention, attention switching) were examined in a sample of 83 male participants. Reaction times on all tasks were shortened significantly. The effects were most pronounced with respect to the Posner paradigm and smallest with respect to the Sternberg paradigm. The relationship to general intelligence changed after practice for two reaction time tasks. It increased to significance for continuous attention and decreased for the Posner paradigm. These results indicate that the relationship between psychometric intelligence and elementary cognitive tasks depends on the ability of skill acquisition. In the search for the cognitive roots of intelligence the concept of learning seems to be of importance.


2007 ◽  
Vol 23 (3) ◽  
pp. 157-165 ◽  
Author(s):  
Carmen Hagemeister

Abstract. When concentration tests are completed repeatedly, reaction time and error rate decrease considerably, but the underlying ability does not improve. In order to overcome this validity problem this study aimed to test if the practice effect between tests and within tests can be useful in determining whether persons have already completed this test. The power law of practice postulates that practice effects are greater in unpracticed than in practiced persons. Two experiments were carried out in which the participants completed the same tests at the beginning and at the end of two test sessions set about 3 days apart. In both experiments, the logistic regression could indeed classify persons according to previous practice through the practice effect between the tests at the beginning and at the end of the session, and, less well but still significantly, through the practice effect within the first test of the session. Further analyses showed that the practice effects correlated more highly with the initial performance than was to be expected for mathematical reasons; typically persons with long reaction times have larger practice effects. Thus, small practice effects alone do not allow one to conclude that a person has worked on the test before.


2000 ◽  
Vol 628 ◽  
Author(s):  
Kazuki Nakanishi ◽  
Souichi Kumon ◽  
Kazuyuki Hirao ◽  
Hiroshi Jinnai

ABSTRACTMacroporous silicate thick films were prepared by a sol-gel dip-coating method accompanied by the phase separation using methyl-trimethoxysilane (MTMS), nitric acid and dimethylformamide (DMF) as starting components. The morphology of the film varied to a large extent depending on the time elapsed after the hydrolysis until the dipping of the coating solution. On a glass substrate, the films prepared by early dipping had inhomogeneous submicrometer-sized pores on the surface of the film. At increased reaction times, relatively narrow sized isolated macropores were observed and their size gradually decreased with the increase of reaction time. On a polyester substrate, in contrast, micrometer-sized isolated spherical gel domains were homogeneously deposited by earlier dippings. With an increase of reaction time, the volume fraction of the gel phase increased, then the morphology of the coating transformed into co-continuous gel domains and macropores, and finally inverted into the continuous gel domains with isolated macropores. The overall morphological variation with the reaction time was explained in terms of the phase separation and the structure freezing by the forced gelation, both of which were induced by the evaporation of methanol during the dipping operation.


Sign in / Sign up

Export Citation Format

Share Document