Collegiate Marching Band Artists Experience High Core Body Temperatures during Rehearsals and Performances

2020 ◽  
Vol 2020 (preprint) ◽  
pp. 0000-0000
Author(s):  
Dawn M. Emerson ◽  
Toni M. Torres-McGehee ◽  
Susan W. Yeargin ◽  
Melani R. Kelly ◽  
Nancy Uriegas ◽  
...  

Abstract Context: No research has investigated thermoregulatory responses and exertional heat illness (EHI) risk factors in marching band (MB) artists performing physical activity in high environmental temperatures. Objective: Examine core temperature (Tc) and EHI risk factors in MB artists. Design: Descriptive epidemiology study. Setting: Three rehearsals and 2 football games for 2 NCAA Division I MBs. Participants: Nineteen volunteers completed the study (female = 13, males = 6; age = 20.5 ± 0.9 years; weight = 75.0 ± 19.1 kg; height = 165.1 ± 7.1 cm). Main Outcome Measures: We measured Tc pre-, post-, and every 15 minutes during activity and recorded wet-bulb globe temperature (WBGT) and relative humidity (RH) every 15 minutes. Other variables included activity time and intensity, ground surface, hydration characteristics (fluid volume, sweat rate, urine specific gravity, percent body mass loss [%BM]), and medical history (eg, previous EHI, medications). Statistical analysis included descriptives (mean ± standard deviation), comparative analyses determined differences within and between days, and linear regression identified variables that significantly explained Tc. Results: Mean rehearsal time = 102.8 ± 19.8 minutes and game time = 260.5 ± 47.7 minutes. Max game Tc (39.1 ± 1.1°C) was significantly higher than rehearsal (38.4 ± 0.7°C, P = .003). The highest max game Tc = 41.2°C. Participants consumed significantly more fluid than their sweat rates (P < .003), which minimized %BM loss, particularly during rehearsals (−0.4 ± 0.6%). Mean game %BM loss = −0.9 ± 2.0%; however, 63.6% of the time, participants reported hypohydrated to game day. Max Tc was significantly predicted by max WBGT, max RH, ground surface, using mental health medications, and hours of sleep (adjusted R2 = 0.542, P < .001). Conclusions: Marching band artists experience high Tc during activity and should have access to athletic trainers who can implement EHI prevention and management strategies.

2021 ◽  
Vol 56 (3) ◽  
pp. 302-310
Author(s):  
Dawn M. Emerson ◽  
Toni Marie Torres-McGehee ◽  
Susan W. Yeargin ◽  
Melani R. Kelly ◽  
Nancy Uriegas ◽  
...  

Context To our knowledge, no researchers have investigated thermoregulatory responses and exertional heat illness (EHI) risk factors in marching band (MB) artists performing physical activity in high environmental temperatures. Objective To examine core temperature (Tc) and EHI risk factors in MB artists. Design Descriptive epidemiology study. Setting Three rehearsals and 2 football games for 2 National Collegiate Athletic Association Division I institution's MBs. Patients or Other Participants Nineteen volunteers (females = 13, males = 6; age = 20.5 ± 0.9 years, height = 165.1 ± 7.1 cm, mass = 75.0 ± 19.1 kg) completed the study. Main Outcome Measure(s) We measured Tc, wet bulb globe temperature, and relative humidity preactivity, during activity, and postactivity. Other variables were activity time and intensity, body surface area, hydration characteristics (fluid volume, sweat rate, urine specific gravity, percentage of body mass loss), and medical history (eg, previous EHI, medications). The statistical analysis consisted of descriptive information (mean ± standard deviation), comparative analyses that determined differences within days, and correlations that identified variables significantly associated with Tc. Results The mean time for rehearsals was 102.8 ± 19.8 minutes and for games was 260.5 ± 47.7 minutes. Mean maximum Tc was 39.1 ± 1.1°C for games and 38.4 ± 0.7°C for rehearsals; the highest Tc (41.2°C) occurred during a game. Fluid consumption did not match sweat rates (P < .001). Participants reported to games in a hypohydrated state 63.6% of the time. The maximum Tc correlated with the maximum wet bulb globe temperature (r = 0.618, P < .001) and was higher in individuals using mental health medications (rpb = −0.254, P = .022) and females (rpb = 0.330, P = .002). Body surface area (r = −0.449, P < .001) and instrument mass (r = −0.479, P < .001) were negatively correlated with Tc. Conclusions Marching band artists experienced high Tc during activity and should have access to athletic trainers who can implement EHI-prevention and -management strategies.


Author(s):  
Haven Guyer ◽  
Matei Georgescu ◽  
David M Hondula ◽  
Floris Wardenaar ◽  
Jennifer Vanos

Abstract Exertional heat illness and stroke are serious concerns across youth and college sports programs. While some teams and governing bodies have adopted the wet bulb globe temperature (WBGT), few practitioners use measurements on the field of play; rather, they often rely on regionally modeled or estimated WBGT. However, urban development-induced heat and projected climate change increase exposure to heat. We examined WBGT levels between various athletic surfaces and regional weather stations under current and projected climates and in hot-humid and hot-dry weather regimes in the southwest U.S. in Tempe, Arizona. On-site sun-exposed WBGT data across five days (07:00–19:00 local time) in June (dry) and August (humid) were collected over five athletic surfaces: rubber, artificial turf, clay, grass, and asphalt. Weather stations data were used to estimate regional WBGT (via the Liljegren model) and compared to on-site, observed WBGT. Finally, projected changes to WBGT were modeled under mid-century and late-century conditions. On-field WBGT observations were, on average, significantly higher than WBGT estimated from regional weather stations by 2.4°C–2.5°C, with mean on-field WBGT across both months of 28.52.76°C (versus 25.83.21°C regionally). However, between-athletic surface WBGT differences were largely insignificant. Significantly higher mean WBGTs occurred in August (30.12.35°C) versus June (26.92.19°C) across all venues; August conditions reached ‘limit activity’ or ‘cancellation’ thresholds for 6–8 hours and 2–4 hours of the day, respectively, for all sports venues. Climate projections show increased WBGTs across measurement locations, dependent on projection and period, with average August WBGT under the highest representative concentration pathway causing all-day activity cancellations. Practitioners are encouraged to use WBGT devices within the vicinity of the fields of play, yet should not rely on weather station estimations without corrections used. Heat concerns are expected to increase in the future, underlining the need for athlete monitoring, local cooling design strategies, and heat adaptation for safety.


Health Scope ◽  
2018 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Hamidreza Heidari ◽  
Farideh Golbabaei ◽  
Aliakbar Shamsipour ◽  
Abbas Rahimi Forushani ◽  
Abbasali Gaeini

2016 ◽  
Vol 51 (8) ◽  
pp. 593-600 ◽  
Author(s):  
Earl R. Cooper ◽  
Michael S. Ferrara ◽  
Douglas J. Casa ◽  
John W. Powell ◽  
Steven P. Broglio ◽  
...  

Context: Knowledge about the specific environmental and practice risks to participants in American intercollegiate football during preseason practices is limited. Identifying risks may mitigate occurrences of exertional heat illness (EHI). Objective: To evaluate the associations among preseason practice day, session number, and wet bulb globe temperature (WBGT) and the incidence of EHI. Design: Descriptive epidemiology study. Setting: Sixty colleges and universities representing 5 geographic regions of the United States. Patients or Other Participants: National Collegiate Athletic Association football players. Main Outcome Measure(s): Data related to preseason practice day, session number, and WBGT. We measured WBGT every 15 minutes during the practice sessions and used the mean WBGT from each session in the analysis. We recorded the incidence of EHIs and calculated the athlete-exposures (AEs). Results: A total of 553 EHI cases and 365 810 AEs were reported for an overall EHI rate of 1.52/1000 AEs (95% confidence interval [CI] = 1.42, 1.68). Approximately 74% (n = 407) of the reported EHI cases were exertional heat cramps (incidence rate = 1.14/1000 AEs; 95% CI = 1.03, 1.25), and about 26% (n = 146) were a combination of exertional heat syncope and heat exhaustion (incidence rate = 0.40/1000 AEs; 95% CI = 0.35, 0.48). The highest rate of EHI occurred during the first 14 days of the preseason period, and the greatest risk was during the first 7 days. The risk of EHI increased substantially when the WBGT was 82.0°F (27.8°C) or greater. Conclusions: We found an increased rate of EHI during the first 14 days of practice, especially during the first 7 days. When the WBGT was greater than 82.0°F (27.8°C), the rate of EHI increased. Sports medicine personnel should take all necessary preventive measures to reduce the EHI risk during the first 14 days of practice and when the environmental conditions are greater than 82.0°F (27.8°C) WBGT.


2008 ◽  
Vol 43 (2) ◽  
pp. 184-189 ◽  
Author(s):  
Sandra Fowkes Godek ◽  
Arthur R. Bartolozzi ◽  
Richard Burkholder ◽  
Eric Sugarman ◽  
Chris Peduzzi

Abstract Context: Many National Football League (NFL) teams practice 2 times per day over consecutive days in a hot and humid environment. Large body surface area (BSA) and use of protective equipment result in high sweat rates and total sweat loss in these football players. Objective: To compare sweat rate, sweat loss, fluid consumption, and weight loss between NFL linemen and backs during preseason practices. Design: Between-groups design. Setting: Preseason training camp with wet bulb globe temperature between 19°C and 25°C. Patients or Other Participants: Eight linemen and 4 backs and receivers participated. Main Outcome Measure(s): Data were collected during both practice sessions on 2 separate days during the first week of August. Sweat rate was calculated as change in mass adjusted for all fluids consumed between prepractice and postpractice body mass measurements and the urine produced during practice divided by the length of the practice session. Gross daily sweat losses also were calculated. Results: Height, mass, and BSA were higher in linemen than in backs. Sweat rate was also higher in linemen (2385 ± 520 mL/h) than in backs (1410 ± 660 mL/h, P < .001), as was the total volume of sweat lost during both practices in 1 day (6870 ± 1034 mL/d versus 4110 ± 2287 mL/d, P  =  .014). Compared with backs, linemen consumed more fluids during practice (2030 ± 849 mL versus 1179 ± 753 mL, P  =  .025) but produced less urine (53 ± 73 mL versus 163 ± 141 mL, P  =  .018). There was no difference in postpractice weight loss (linemen  =  −1.15 ± 0.83%, backs  =  −1.06 ± 0.76%). Conclusions: Linemen sweated at higher rates, lost larger volumes of sweat, consumed more fluids, and produced less urine during practice compared with the physically smaller backs, but they did not lose a greater percentage of body weight. Sodium losses could be considerable in NFL players during the preseason because of high daily sweat losses in backs and in linemen.


2010 ◽  
Vol 45 (2) ◽  
pp. 136-146 ◽  
Author(s):  
Susan Walker Yeargin ◽  
Douglas J. Casa ◽  
Daniel A. Judelson ◽  
Brendon P. McDermott ◽  
Matthew S. Ganio ◽  
...  

Abstract Context: Previous researchers have not investigated the thermoregulatory responses to multiple consecutive days of American football in adolescents. Objective: To examine the thermoregulatory and hydration responses of high school players during formal preseason football practices. Design: Observational study. Setting: Players practiced outdoors in late August once per day on days 1 through 5, twice per day on days 6 and 7, and once per day on days 8 through 10. Maximum wet bulb globe temperature averaged 23 ± 4°C. Patients or Other Participants: Twenty-five heat-acclimatized adolescent boys (age  =  15 ± 1 years, height  =  180 ± 8 cm, mass  =  81.4 ± 15.8 kg, body fat  =  12 ± 5%, Tanner stage  =  4 ± 1). Main Outcome Measure(s): We observed participants within and across preseason practices of football. Measures included gastrointestinal temperature (TGI), urine osmolality, sweat rate, forearm sweat composition, fluid consumption, testosterone to cortisol ratio, perceptual measures of thirst, perceptual measures of thermal sensation, a modified Environmental Symptoms Questionnaire, and knowledge questionnaires assessing the participants' understanding of heat illnesses and hydration. Results were analyzed for differences across time and were compared between younger (14–15 years, n  =  13) and older (16–17 years, n  =  12) participants. Results: Maximum daily TGI values remained less than 40°C and were correlated with maximum wet bulb globe temperature (r  =  0.59, P  =  .009). Average urine osmolality indicated that participants generally experienced minimal to moderate hypohydration before (881 ± 285 mOsmol/kg) and after (856 ± 259 mOsmol/kg) each practice as a result of replacing approximately two-thirds of their sweat losses during exercise but inadequately rehydrating between practices. Age did not affect most variables; however, sweat rate was lower in younger participants (0.6 ± 0.2 L/h) than in older participants (0.8 ± 0.1 L/h) (F1,18  =  8.774, P  =  .008). Conclusions: Previously heat-acclimatized adolescent boys (TGI < 40°C) can safely complete the initial days of preseason football practice in moderate environmental conditions using well-designed practice guidelines. Adolescent boys replaced most sweat lost during practice but remained mildly hypohydrated throughout data collection, indicating inadequate hydration habits when they were not at practice.


Author(s):  
Mitchell J. Henderson ◽  
Bryna C.R. Chrismas ◽  
Christopher J. Stevens ◽  
Andrew Novak ◽  
Job Fransen ◽  
...  

Purpose: To determine whether elite female rugby sevens players are exposed to core temperatures (Tc) during training in the heat that replicate the temperate match demands previously reported and to investigate whether additional clothing worn during a hot training session meaningfully increases the heat load experienced. Methods: A randomized parallel-group study design was employed, with all players completing the same approximately 70-minute training session (27.5°C–34.8°C wet bulb globe temperature) and wearing a standardized training ensemble (synthetic rugby shorts and training tee [control (CON); n = 8]) or additional clothing (standardized training ensemble plus compression garments and full tracksuit [additional clothing (AC); n = 6]). Groupwise differences in Tc, sweat rate, GPS-measured external locomotive output, rating of perceived exertion, and perceptual thermal load were compared. Results: Mean (P = .006, ) and peak (P < .001, ) Tc were higher in AC compared with CON during the training session. There were no differences in external load (F4,9 = 0.155, P = .956, Wilks Λ = 0.935, ) or sweat rate (P = .054, Cohen d = 1.09). A higher rating of perceived exertion (P = .016, Cohen d = 1.49) was observed in AC compared with CON. No exertional-heat-illness symptomology was reported in either group. Conclusions: Player Tc is similar between training performed in hot environments and match play in temperate conditions when involved for >6 minutes. Additional clothing is a viable and effective method to increase heat strain in female rugby sevens players without compromising training specificity or external locomotive capacity.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1664 ◽  
Author(s):  
Lisa Klous ◽  
Esther Siegers ◽  
Jan van den Broek ◽  
Mireille Folkerts ◽  
Nicola Gerrett ◽  
...  

In this study, we examined the effects of pre-cooling on thermophysiological responses in horses exercising in moderate environmental conditions (average wet bulb globe temperature: 18.5 ± 3.8 °C). Ten international eventing horses performed moderate intensity canter training on two separate days, and were either pre-cooled with cold-water rinsing (5–9 °C for 8 ± 3 min; cooling) or were not pre-cooled (control). We determined velocity (V), heart rate (HR), rectal temperature (Tre,), shoulder and rump skin temperature (Tshoulder and Trump), plasma lactate concentration (LA), gross sweat loss (GSL), and local sweat rate (LSR), as well as sweat sodium, chloride and potassium concentrations. The effect of pre-cooling on Tre was dependent on time; after 20 min of exercise the effect was the largest (estimate: 0.990, 95% likelihood confidence intervals (95% CI): 0.987, 0.993) compared to the control condition, resulting in a lower median Tre of 0.3 °C. Skin temperature was also affected by pre-cooling compared to the control condition (Tshoulder: −3.30 °C, 95% CI: −3.739, −2.867; Trump: −2.31 °C, 95% CI: −2.661, −1.967). V, HR, LA, GSL, LSR and sweat composition were not affected by pre-cooling. In conclusion, pre-cooling by cold-water rinsing could increase the margin for heat storage, allowing a longer exercise time before a critical Tre is reached and, therefore, could potentially improve equine welfare during competition.


Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 164
Author(s):  
Sharon Stay ◽  
Michelle Cort ◽  
David Ward ◽  
Alex Kountouris ◽  
John Orchard ◽  
...  

This study aimed to observe core temperature responses in elite cricket players under match conditions during the summer in Australia. Thirty-eight Australian male cricketers ingested capsule temperature sensors during six four-day first-class matches between February 2016 and March 2017. Core temperature (Tc) was recorded during breaks in play. Batters showed an increase in Tc related to time spent batting of approximately 1 °C per two hours of play (p < 0.001). Increases in rate of perceived exertion (RPE) in batters correlated with smaller elevations in Tc (0.2 °C per one unit of elevation in RPE) (p < 0.001). Significant, but clinically trivial, increases in Tc of batters were found related to the day of play, wet bulb globe temperature (WBGT), air temperature, and humidity. A trivial increase in Tc (p < 0.001) was associated with time in the field and RPE when fielding. There was no association between Tc and WBGT, air temperature, humidity, or day of play in fielders. This study demonstrates that batters have greater rises in Tc than other cricket participants, and may have an increased risk of exertional heat illness, despite exposure to similar environmental conditions.


2016 ◽  
Vol 59 (12) ◽  
pp. 1169-1176 ◽  
Author(s):  
Ximena P. Garzon-Villalba ◽  
Alfred Mbah ◽  
Yougui Wu ◽  
Michael Hiles ◽  
Hanna Moore ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document