scholarly journals Descriptions of diplostomid metacercariae (Digenea: Diplostomidae) from freshwater fishes in the Tshwane area

Author(s):  
Esmey B.E. Moema ◽  
Pieter H. King ◽  
Johnny N. Rakgole ◽  
Chantélle Baker

The metacercarial (larval) stages of diplostomid digeneans are known to inhabit freshwater fish, causing tissue damage in the process. Due to their widespread diversity, little is known about their life cycle. The classification of these parasitic stages to the species level using only the morphology is very challenging due to the lack of genitalia; they are regarded to be the most important structures in the identification of these organisms. In this study, additional morphological information through light and scanning electron microscopy is given for two different diplostomids found in the cranial cavity of Clarias gariepinus and the vitreous chambers of Tilapia sparrmanii and Pseudocrenilabrus philander. The diplostomid metacercaria inhabiting the cranial cavity of Clarias gariepinus was morphologically identified as Diplostomulum (Tylodelphys) mashonenseand an unknown metacercaria of the genus Diplostomumwas found in the vitreous chambers of Pseudocrenilabrus philander and Tilapia sparrmanii. Both parasitic species’ 28S recombinant deoxyribonucleic acid genomic regions were successfully amplified using Dig 125/1500R primer pairs. The assay yielded a product of approximately 1300 base pairs as seen on the gel images. There were 14 nucleotide differences over the entire analysed sequences resulting in a 1.1% (14/1273) nucleotide difference. In line with the morphological characteristics of these parasites, there seemed to be a slight difference in their genetic makeup. The application of molecular techniques on digenetic trematodes seems very promising and may yield great potential in future descriptions of morphologically similar parasitic species.

Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 580
Author(s):  
Hongyi Liu ◽  
Yufeng Zhang ◽  
Wei Xu ◽  
Yu Fang ◽  
Honghua Ruan

Identification based on conventional morphological characteristics is typically difficult and time-consuming. The development of molecular techniques provides a novel strategy that relies on specific mitochondrial gene fragments to conduct authentication. For this study, five newly sequenced partial mitogenomes of earthworms (Bimastos parvus, Dendrobaena octaedra, Eisenia andrei, Eisenia nordenskioldi, and Octolasion tyrtaeum) with lengths ranging from 14,977 to 15,715 were presented. Each mitogenome possessed a putative control region that resided between tRNA-Arg and tRNA-His. All of the PCGs were under negative selection according to the value of Ka/Ks. The phylogenetic trees supported the classification of Eisenia and Lumbricus; however, the trees based on cox1 did not. Through various comparisons, it was determined that cox1 fragments might be more suitable for molecular identification. These results lay the foundation for further phylogenetic studies on Lumbricidae.


2015 ◽  
Vol 90 (6) ◽  
pp. 712-718
Author(s):  
F.D. Chibwana ◽  
G. Nkwengulila

AbstractThe nervous systems of three Tylodelphys metacercariae (T. mashonense, Tylodelphys spp. 1 and 2) co-occurring in the cranial cavity of the catfish, Clarias gariepinus, were examined by the activity of acetylthiocholine iodide (AcThI), with the aim of better understanding the arrangement of sensillae on the body surface and the nerve trunks and commissures, for taxonomic purposes. Enzyme cytochemistry demonstrated a comparable orthogonal arrangement in the three metacercariae: the central nervous system (CNS) consisting of a pair of cerebral ganglia, from which anterior and posterior neuronal pathways arise and inter-link by cross-connectives and commissures. However, the number of transverse nerves was significantly different in the three diplostomid metacercariae: Tylodelphys sp. 1 (30), Tylodelphys sp. 2 (21) and T. mashonense (15). The observed difference in the nervous system of the three metacercariae clearly separates them into three species. These findings suggest that consistent differences in the transverse nerves of digenean metacercariae could enable the differentiation of metacercariae to the species level in the absence of molecular techniques. This, however, might require further testing on a larger number of species of digenean metacercariae.


Author(s):  
I. R. Khuzina ◽  
V. N. Komarov

The paper considers a point of view, based on the conception of the broad understanding of taxons. According to this point of view, rhyncholites of the subgenus Dentatobeccus and Microbeccus are accepted to be synonymous with the genus Rhynchoteuthis, and subgenus Romanovichella is considered to be synonymous with the genus Palaeoteuthis. The criteria, exercising influence on the different approaches to the classification of rhyncholites, have been analyzed (such as age and individual variability, sexual dimorphism, pathological and teratological features, degree of disintegration of material), underestimation of which can lead to inaccuracy. Divestment of the subgenuses Dentatobeccus, Microbeccus and Romanovichella, possessing very bright morphological characteristics, to have an independent status and denomination to their synonyms, has been noted to be unjustified. An artificial system (any suggested variant) with all its minuses is a single probable system for rhyncholites. The main criteria, minimizing its negative sides and proving the separation of the new taxon, is an available mass-scale material. The narrow understanding of the genus, used in sensible limits, has been underlined to simplify the problem of the passing the view about the genus to the other investigators and recognition of rhyncholites for the practical tasks.


Author(s):  
Cesar de Souza Bastos Junior ◽  
Vera Lucia Nunes Pannain ◽  
Adriana Caroli-Bottino

Abstract Introduction Colorectal carcinoma (CRC) is the most common gastrointestinal neoplasm in the world, accounting for 15% of cancer-related deaths. This condition is related to different molecular pathways, among them the recently described serrated pathway, whose characteristic entities, serrated lesions, have undergone important changes in their names and diagnostic criteria in the past thirty years. The multiplicity of denominations and criteria over the last years may be responsible for the low interobserver concordance (IOC) described in the literature. Objectives The present study aims to describe the evolution in classification of serrated lesions, based on the last three publications of the World Health Organization (WHO) and the reproducibility of these criteria by pathologists, based on the evaluation of the IOC. Methods A search was conducted in the PubMed, ResearchGate and Portal Capes databases, with the following terms: sessile serrated lesion; serrated lesions; serrated adenoma; interobserver concordance; and reproducibility. Articles published since 1990 were researched. Results and Discussion The classification of serrated lesions in the past thirty years showed different denominations and diagnostic criteria. The reproducibility and IOC of these criteria in the literature, based on the kappa coefficient, varied in most studies, from very poor to moderate. Conclusions Interobserver concordance and the reproducibility of microscopic criteria may represent a limitation for the diagnosis and appropriate management of these lesions. It is necessary to investigate diagnostic tools to improve the performance of the pathologist's evaluation, for better concordance, and, consequently, adequate diagnosis and treatment.


Author(s):  
Gabriella Vindigni ◽  
Alfredo Pulvirenti ◽  
Salvatore Alaimo ◽  
Clara Monaco ◽  
Daniela Spina ◽  
...  

Fisheries products are some of the most traded commodities world-wide and the potential for fraud is a serious concern. Fish fraud represents a threat to human health and poses serious concerns due to the consumption of toxins, highly allergenic species, contaminates or zoonotic parasites, which may be present in substituted fish. The substitution of more expensive fish by cheaper species, with similar morphological characteristics but different origins, reflects the need for greater transparency and traceability upon which which the security of the entire seafood value-chain depends. Even though EU regulations have made significant progress in consumer information by stringent labelling requirements, fraud is still widespread. Many molecular techniques such as DNA barcoding provide valuable support to enhance the Common Fisheries Policy (CFP) in the protection of consumer interests by unequivocally detecting any kind of fraud. This paper aims to highlight both the engagement of EU fishery policy and the opportunity offered by new biotechnology instruments to mitigate the growing fraud in the globalized fish market and to enforce the food security system to protect consumers’ health. In this paper, after a presentation of EU rules on fish labeling and a general overview on the current state of the global fish market, we discuss the public health implications and the opportunities offered by several techniques based on genetics, reporting a case study to show the efficacy of the DNA barcoding methodology in assessing fish traceability and identification, comparing different species of the Epinephelus genus, Mottled Grouper (Mycteroperca rubra) and Wreckfish (Polyprion americanus), often improperly sold with the commercial name of “grouper”.


1997 ◽  
Vol 48 (5) ◽  
pp. 401 ◽  
Author(s):  
Jesse D. Ronquillo ◽  
Toshio Saisho

Gravid females of Metapenaeopsis barbata spawned in the laboratory by natural means and the larvae were reared from hatching to postlarval stage at 27·0–29·8˚C and 33·5–34·5 g kg -1 salinity. The larvae metamorphosed into first postlarvae, with a survival rate of up to 98·4%, after about 10 days following hatching and subsistence on only an algal diet of Tetraselmis tetrathele and Chaetoceros gracilis. Six naupliar stages, three protozoeal stages, three mysis stages and the first postlarval stage are described and illustrated. On the basis of morphological characteristics, larval stages of M. barbata can be distinguished from similar stages of closely related species in the family Penaeidae. As inferred from the morphology of the larval feeding apparatus, M. barbata is still a filter-feeder even at the first postlarval stage.


2021 ◽  
Vol 126 (4) ◽  
pp. 401-420
Author(s):  
Bertrand Launay ◽  
Julien Barnasson ◽  
Juliette Becquet ◽  
Michel Brulin ◽  
Sophie Cauvy-Fraunie ◽  
...  

Discovery of a new population of Rhithrogena delphinensis Sowa & Degrange, 1987, in the Arves Massif, and additions to the morphological description of the larva (Ephemeroptera, Heptageniidae). Rhithrogena delphinensis, described originally on the basis of four larvae from the Western Alps, south of the Arves Massif and from the northern flank of the Ecrins Massif, had not been captured again since 1986. Here, we report the discovery of a new population from river Arvan, whose drainage basin is located between the Grandes Rousses Massif and the northern flank of the Arves Massif. This newly discovered population seems abundant in numbers, and reveals the particular ecological requirements of the species as well as its dependence on glacier fed or nival streams. The morphological characteristics of the larvae are described in detail, and illustrated by photographs. The variability of some of the proposed identification criteria is discussed, and a key to the identification of the Rhithrogena species from the alpestris group of the Western Alps, to which R. delphinensis belongs, is provided. Finally, a portion of 658 base pairs of the COI gene of R. delphinensis is sequenced for the first time and compared to already existing data on the alpestris group in the Western Alps.


Sign in / Sign up

Export Citation Format

Share Document