Canagliflozin, a SGLT-2 inhibitor, relieves ER stress, modulates autophagy and induces apoptosis in irradiated HepG2 cells: Signal transduction between PI3K/AKT/GSK-3β/mTOR and Wnt/β-catenin pathways; in vitro

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
MohamedKhairy Abdel-Rafei ◽  
NouraMagdy Thabet ◽  
LailaAhmed Rashed ◽  
EnasMahmoud Moustafa
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoqing Ma ◽  
Wenhua Du ◽  
Shanshan Shao ◽  
Chunxiao Yu ◽  
Lingyan Zhou ◽  
...  

Purpose. We investigated whether a DDP-4 inhibitor, vildagliptin, alleviated ER stress induced by a high fat diet and improved hepatic lipid deposition. Methods. C57BL/6 mice received standard chow diet (CD), high fat diet (HFD), and HFD administered with vildagliptin (50 mg/Kg) (V-HFD). After administration for 12 weeks, serum alanine aminotransferase, glucose, cholesterol, triglyceride, and insulin levels were analyzed. Samples of liver underwent histological examination and transmission electron microscopy, real-time PCR for gene expression levels, and western blots for protein expression levels. ER stress was induced in HepG2 cells with palmitic acid and the effects of vildagliptin were investigated. Results. HFD mice showed increased liver weight/body weight (20.27%) and liver triglycerides (314.75%) compared to CD mice, but these decreased by 9.27% and 21.83%, respectively, in V-HFD mice. In the liver, HFD induced the expression of ER stress indicators significantly, which were obviously decreased by vildagliptin. In vitro, the expressions of molecular indicators of ER stress were reduced in HepG2 when vildagliptin was administered. Conclusions. Vildagliptin alleviates hepatic ER stress in a mouse high fat diet model. In HepG2 cells, vildagliptin directly reduced ER stress. Therefore, vildagliptin may be a potential agent for nonalcoholic fatty liver disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ran Li ◽  
Fengying Gong ◽  
Hui Pan ◽  
Hanting Liang ◽  
Hui Miao ◽  
...  

PurposeLaron syndrome (LS) is a severe growth disorder caused by GHR gene mutation or post-receptor pathways defect. The clinical features of these patients collected in our present study were summarized, GHR gene variants were investigated and further in vitro functional verification was carried out.MethodsFour patients with LS were collected, their clinical characteristics were summarized, genomic DNA was extracted, and GHR gene was amplified and sequenced. GHR wild type (GHR-WT) and mutant GHR expression plasmids were constructed, and transiently transfected into HepG2 cells and HEK293T cells to observe the subcellular distribution of the GHR protein by immunofluorescence and to determine the expression of GHR and its post-receptor signaling pathway changes by Western blotting.ResultsAll of the four patients were male, and the median height was -4.72 SDS. Four GHR gene variants including c.587A>C (p.Y196S), c.766C>T (p.Q256*), c.808A>G (p.I270V) and c.1707-1710del (p.E570Afs*30) were identified, and the latter two were novel mutations. The results of mutant GHR plasmids transfection experiments and immunofluorescence assay showed that the subcellular distribution of GHR-Q256* and GHR-E570Afs*30 mutant proteins in HepG2 and HEK293T cells presented with a unique ring-like pattern, gathering around the nucleus, while GHR-Y196S mutant protein was evenly distributed on HepG2 cell membrane similar to GHR-WT. The GHR protein levels of HepG2 cells transiently transfected with GHR-Y196S, GHR-Q256* and GHR-E570Afs*30 were all significantly lower when compared with cells transfected with GHR-WT (P<0.05). Further mutant GHR post-receptor signal transduction investigation demonstrated that GH induced phosphorylated STAT5 levels of HepG2 cells transfected with three mutant plasmids were all significantly decreased in comparison with that of GHR-WT (P<0.05).ConclusionsTwo novel GHR gene mutations (I270V and E570Afs*30) were found in our patients with LS. GHR mutations influenced the subcellular distribution and GHR protein levels, then led to the impaired post-receptor signal transduction, suggesting that the GHR mutations contributed to the pathological condition of LS patients.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1760
Author(s):  
Ga-Ram Yu ◽  
Seung-Jun Lee ◽  
Dong-Woo Lim ◽  
Hyuck Kim ◽  
Jai-Eun Kim ◽  
...  

Sochehwan (SCH) is an herbal prescription from traditional oriental medicine and is currently used to treat digestive ailments. In a previous study, SCH was found to have the potential to attenuate metabolic syndrome (MetS) by activating AMPK and downstream signaling. From the view of drug repurposing, the efficacy of SCH on alcoholic liver injury is implied in classic medical texts but is yet to be proven. C57BL/6J mice were pre-treated with SCH orally for 5 days and challenged by providing a pair-fed Lieber DeCarli diet containing alcohol for 20 days. Hepatic enzyme and triglyceride levels and endoplasmic reticulum (ER) stress-related markers were analyzed. Moreover, mitogen-activated protein kinases (MAPKs) and cytochrome P450 2E1 (CYP2E1) levels were determined. CYP2E1-transfected HepG2 cells were used to test the cytoprotective efficacy of SCH against the adverse effects of alcohol in vitro. In mice, SCH administration notably reduced hepatic enzyme activity and neural lipid levels. Furthermore, ER-stress markers and MAPK phosphorylation were reduced due to ROS suppression, which was attributed to decreased CYP2E1 expression in liver tissue. In addition, SCH successfully protected CYP2E1-transfected HepG2 cells against ethanol. Our findings suggest SCH attenuated alcohol-induced liver injury by inhibiting CYP2E1 expression and indicate drug repurposing should be considered as a valuable option for drug development in traditional herbal medicines.


2021 ◽  
Vol 2021 ◽  
pp. 1-31
Author(s):  
Farhin Patel ◽  
Kirti Parwani ◽  
Dhara Patel ◽  
Palash Mandal

Alcohol-induced liver injury implicates inflammation and oxidative stress as important mediators. Despite rigorous research, there is still no Food and Drug Administration (FDA) approved therapies for any stage of alcoholic liver disease (ALD). Interestingly, metformin (Met) and several probiotic strains possess the potential of inhibiting alcoholic liver injury. Therefore, we investigated the effectiveness of combination therapy using a mixture of eight strains of lactic acid-producing bacteria, commercialized as Visbiome® (V) and Met in preventing the ethanol-induced hepatic injury using in vitro and in vivo models. Human HepG2 cells and male Wistar rats were exposed to ethanol and simultaneously treated with probiotic V or Met alone as well as in combination. Endoplasmic reticulum (ER) stress markers, inflammatory markers, lipid metabolism, reactive oxygen species (ROS) production, and oxidative stress were evaluated, using qRT-PCR, Oil red O staining, fluorimetry, and HPLC. In vitro, probiotic V and Met in combination prevented ethanol-induced cellular injury, ER stress, oxidative stress, and regulated lipid metabolism as well as inflammatory response in HepG2 cells. Probiotic V and Met also promoted macrophage polarization towards the M2 phenotype in ethanol-exposed RAW 264.7 macrophage cells. In vivo, combined administration of probiotic V and Met ameliorated the histopathological changes, inflammatory response, hepatic markers (liver enzymes), and lipid metabolism induced by ethanol. It also improved the antioxidant markers (HO-1 and Nrf-2), as seen by their protein levels in both HepG2 cells as well as liver tissue using ELISA. Hence, probiotic V may act, in addition to the Met, as an effective preventive treatment against ethanol-induced hepatic injury.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Omaima Ali ◽  
Hebatallah A. Darwish ◽  
Kamal M. Eldeib ◽  
Samy A. Abdel Azim

Nonalcoholic fatty liver disease (NAFLD) is a metabolic-related disorder ranging from steatosis to steatohepatitis, which may progress to cirrhosis and hepatocellular carcinoma (HCC). This study aimed at assessing the regulatory and protective role of miR-26a on lipid metabolism and progression of NAFLD in human HepG2 cells loaded with free fatty acids (FFA). Lentivirus expressing miR-26a or negative control miR was used to transduce HepG2 cells and to establish stable cell lines. Gain or loss of function using an miR-26a inhibitor was used to compare triglyceride content (TG), total cholesterol level (CL), total antioxidant capacity (TAC), malondialdehyde (MDA) and the level of apoptosis. In addition, quantitative reverse transcription polymerase chain reaction (qPCR) was used to assess the mRNA levels of lipogenesis, TG synthesis, storage genes, inflammatory and fibrogenic markers, and autophagic besides endoplasmic reticulum (ER) stress markers after gaining or losing the function of miR-26a. miR-26a levels decreased in response to FFA in human HepG2 cells. After the establishment of a stable cell line, the upregulation of miR-26a resulted in the downregulation of TG, CL, and MDA levels, through regulating mRNA levels of genes involved in lipid homeostasis, ER stress marker, inflammatory and fibrogenic markers. Nevertheless, there was a marked increment in the mRNA expression of autophagic marker genes. Moreover, miR-26a overexpression protects the cells from apoptosis, whereas inhibition of miR-26a, using an anti-miR-26a oligonucleotide, decreased the expression of miR-26a which potentially contributes to altered lipid metabolism in HepG2 cells loaded with FFA. In conclusion, these findings suggested that miR-26a has a crucial role in regulating fatty acid and cholesterol homeostasis in HepG2 cells, along with the offered protection against the progression of NAFLD in vitro. Hence, miRNAs could receive growing attention as useful noninvasive diagnostic markers to follow the progression of NAFLD and to identify novel therapeutic targets.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao-Yi Feng ◽  
Wei Zhao ◽  
Zheng Yao ◽  
Ning-Yi Wei ◽  
An-Hua Shi ◽  
...  

The Na+/K+-ATPase α1 subunit (ATP1A1) is a potential target for hepatic carcinoma (HCC) treatment, which plays a key role in Na+/K+ exchange, metabolism, signal transduction, etc. In vivo, we found that Panax notoginseng saponins (PNS) could inhibit tumor growth and significantly downregulate the expression and phosphorylation of ATP1A1/AKT/ERK in tumor-bearing mice. Our study aims to explore the potential effects of PNS on the regulation of ATP1A1 and the possible mechanisms of antitumor activity. The effects of PNS on HepG2 cell viability, migration, and apoptosis were examined in vitro. Fluorescence, Western blot, and RT-PCR analyses were used to examine the protein and gene expression. Further analysis was assessed with a Na+/K+-ATPase inhibitor (digitonin) and sorafenib in vitro. We found that the ATP1A1 expression was markedly higher in HepG2 cells than in L02 cells and PNS exhibited a dose-dependent effect on the expression of ATP1A and the regulation of AKT/ERK signaling pathways. Digitonin did not affect the expression of ATP1A1 but attenuated the effects of PNS on the regulation of ATP1A1/AKT/ERK signaling pathways and enhanced the antitumor effect of PNS by promoting nuclear fragmentation. Taken together, PNS inhibited the proliferation of HepG2 cells via downregulation of ATP1A1 and signal transduction. Our findings will aid a data basis for the clinical use of PNS.


2012 ◽  
Vol 29 (4) ◽  
pp. 727-740 ◽  
Author(s):  
Zan-Chao Liu ◽  
Zheng-Qi Fu ◽  
Jie Song ◽  
Jia-Yu Zhang ◽  
Yu-Ping Wei ◽  
...  
Keyword(s):  

2020 ◽  
Vol 16 (3) ◽  
pp. 358-362
Author(s):  
Renan S. Teixeira ◽  
Paulo H.D. Carvalho ◽  
Jair A.K. Aguiar ◽  
Valquíria P. Medeiros ◽  
Ademar A. Da Silva Filho ◽  
...  

Background: Arctigenin is a lignan found in Arctium lappa L. (Asteraceae) that displays anti-inflammatory activities. Previous studies showed that the crude extract of A. Lappa has antitumor activity in human liver carcinoma, lung and stomach cancer cells. The aim of this study was to obtain arctigenin from A. lappa L., as well as to evaluate its antiproliferative effects in cells of liver carcinoma (HepG2) and fibroblasts (NIH/3T3). Methods: Arctigenin was obtained from the hydrolysis of arctiin, which was isolated from the crude extract of A. lappa. The effects of arctigenin and arctiin on HepG2 cell viability and cell adhesion were analyzed by MTT method. Adhesion assay was also carried out to evaluate the antitumor activity. Results: Our results showed that the analytical process to obtain arctigenin was fast and easy. In vitro experiments showed that arctigenin (107-269 μM) decreased HepG2 cells viability and did not cause cytotoxicity on NIH/3T3 cells. Arctigenin (27-269 μM) demonstrated anti-adhesion in HepG2 cells in a concentration-dependent manner, when compared with control. Conclusion: These results suggest a promising pharmacological activity for arctigenin as an antiproliferative compound.


Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.


Sign in / Sign up

Export Citation Format

Share Document