Optimizing inputs for winter durum wheat in Ontario

2015 ◽  
Vol 95 (2) ◽  
pp. 361-368 ◽  
Author(s):  
Lily Tamburic-Ilincic ◽  
Jonathan M. P. Brinkman ◽  
Ellen Sparry ◽  
David C. Hooker

Tamburic-Ilincic, L., Brinkman, J. M. P., Sparry, E. and Hooker, D. C. 2015. Optimizing inputs for winter durum wheat in Ontario. Can. J. Plant Sci. 95: 361–368. Best management practices need to be determined for a new wheat class in Ontario: winter durum. The objectives of this study were to determine optimal nitrogen rates (75, 100, and 125 kg N ha−1), seeding rates (400, 440, and 480 seeds m−2), and fungicide applications on the grain yield, grain protein, and leaf disease control of ‘OAC Amber’ winter wheat durum at five field locations in Ontario. Seeding rates between 400 and 480 seeds m−2 did not impact performance. Overall, fungicide applications at flag leaf and flowering increased grain yield by an average of 0.52 Mg ha−1, increased seed weight and test weight, reduced powdery mildew [Blumeria graminis (DC.) Speer f. sp. tritici emend. É.J. Marchal] and septoria leaf blotch [Mycosphaerella graminicola (Fuckel) J. Schröt.] in the canopy, but decreased grain protein from 128 to 126 g kg−1. Grain yields did not increase with N rates higher than 100 kg N ha−1, and the response to N rate did not depend on the application of fungicides. Grain protein concentrations increased with N rates up to 125 kg N ha−1, which was the highest N rate investigated in this study. An economic analysis is needed to determine the impact of agronomic management strategies specific to winter durum wheat in Ontario.

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 155 ◽  
Author(s):  
Jinfeng Ding ◽  
Fujian Li ◽  
Tao Le ◽  
Peng Wu ◽  
Min Zhu ◽  
...  

In the rice-wheat rotation system, conventional culturing of high yield rice results in poor soil conditions and excessive residues, which negatively affect wheat growth. Tillage and nitrogen (N) use are being sought to address this problem. In order to propose a suitable tillage method and corresponding N management strategy, the influence of three tillage methods (i.e., plow tillage followed by rotary tillage (PR), rotary tillage twice (RR), and no-tillage (NT)) and nine forms of N management strategies (i.e., three total N rates × three N-splitting schemes) were investigated in a field experiment from 2016 to 2017 (2017) and 2017 to 2018 (2018), using grain yield, grain protein content (GPC), N uptake efficiency (NUpE), and net returns as evaluation indexes. Grain yield, GPC, and net returns were lower in 2017 than 2018, likely as a result of weak seedling growth caused by high soil moisture before and after seeding. In 2017, NT achieved higher grain yield, NUpE, and net returns compared to PR or RR, while grain yield and net returns were higher under tillage in 2018, especially PR. Increased total N rates (210–270 kg ha−1) promoted all evaluation indexes, but suitable timing and corresponding rates of N application are dependent on the environment. These results indicate that the combination of NT and applying N at lower rates and only a few times (i.e., 168 and 72 kg ha−1 applied at pre-sowing and when flag leaves are visible) when the soil is not suitable for tillage is the best method for cutting costs and improving benefits. Under suitable conditions for tillage, PR and intensive management strategies (i.e., 135, 27, 54, and 54 kg ha−1 applied at pre-sowing, four-leaf, jointing, and booting, respectively) could be adopted to increase overall yield, quality, and benefits.


Food Security ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1269-1282
Author(s):  
Charles Bucagu ◽  
Alain Ndoli ◽  
Athanase R. Cyamweshi ◽  
Leon N. Nabahungu ◽  
Athanase Mukuralinda ◽  
...  

AbstractSmallholder maize growers are experiencing significant yield gaps due to sub-optimal agricultural practices. Adequate agricultural inputs, particularly nutrient amendments and best management practices, are essential to reverse this trend. There is a need to understand the cause of variations in maize yield, provide reliable early estimates of yields, and make necessary recommendations for fertilizer applications. Maize yield prediction and estimates of yield gaps using objective and spatial analytical tools could provide accurate and objective information that underpin decision support. A study was conducted in Rwanda at Nyakiliba sector and Gashora sector located in Birunga and Central Bugesera agro-ecological zones, with the objectives of (1) determining factors influencing maize yield, (2) predicting maize yield (using the Normalized Difference Vegetation Index (NDVI) approach), and (3) assessing the maize yield gaps and the impact on food security. Maize grain yield was significantly higher at Nyakiliba (1.74 t ha−1) than at Gashora (0.6 t ha−1). NDVI values correlated positively with maize grain yield at both sites (R2 = 0.50 to 0.65) and soil fertility indicators (R2 = 0.55 to 0.70). Maize yield was highest at 40 kg P ha−1 and response to N fertilizer was adequately simulated at Nyakiliba (R2 = 0.85, maximum yield 3.3 t ha−1). Yield gap was 4.6 t ha−1 in Nyakiliba and 5.1 t ha−1 in Gashora. Soil variables were more important determinants of social class than family size. Knowledge that low nutrient inputs are a major cause of yield gaps in Rwanda should prioritize increasing the rate of fertilizer use in these agricultural systems.


2014 ◽  
Vol 94 (1) ◽  
pp. 141-152 ◽  
Author(s):  
W. E. May ◽  
M. R. Fernandez ◽  
F. Selles ◽  
G. P. Lafond

May, W. E., Fernandez, M. R., Selles, F. and Lafond G. P. 2014. Agronomic practices to reduce leaf spotting and Fusarium kernel infections in durum wheat on the Canadian prairies. Can. J. Plant Sci. 94: 141–152. Fusarium head blight (FHB) has become an important disease of durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn] in the humid and sub-humid regions of the prairies along with leaf spots, black point and red smudge. Together, they contribute to lower grain yields and grain quality. The study objective was to determine the effect of seeding rate, nitrogen (N) fertilizer rate, fungicidal treatment, and cultivar on disease severity, crop development, grain yield and quality in durum. A four-way factorial design was used with two seeding rates (150 and 300 viable seeds m−2), two N rates (75 and 100% of recommended rate), three cultivars (AC Avonlea, AC Morse and AC Navigator), four fungicide treatments (no application, propiconazole at flag leaf, tebuconazole at anthesis, and propiconazole at flag leaf followed by tebuconazole at anthesis) and three locations (two in Saskatchewan and one in Manitoba) from 2001 to 2003. There were no interactions among fungicide, seeding rate, N fertilizer and cultivar for all measured variables. Foliar fungicide treatments resulted in greater kernel weight, grain yield and test weight than the no-fungicide treatment. The application of tebuconazole at anthesis did not reduce the amount of FDK in the harvested grain. The application of a fungicide increased the percentage of kernels infected by black point from 0.38% to over 0.50% and red smudge from 0.54 to 0.61%. Two fungicide applications increased red smudge to 0.85%. Grain yield increased by 2.4% when the seeding rate was increased from 150 to 300 plants m−2. Increasing N fertilizer rate increased grain yield by 5.2%, protein concentration by 5.4% and hard vitreous kernels (HVK) by 2.6%, but decreased test weight by 0.5%. Cultivar selection had the largest effect on FDK. In conclusion, effects of a fungicide application on durum wheat did not interact with selection of seeding rates, cultivars or N rates used in this study.


2020 ◽  
Vol 158 (4) ◽  
pp. 279-287
Author(s):  
Eve-Anne Laurent ◽  
Nawel Ahmed ◽  
Céline Durieu ◽  
Philippe Grieu ◽  
Thierry Lamaze

AbstractDurum wheat culture requires a high level of N fertilization to achieve ideal protein concentration for semolina and pasta quality, contributing to N losses. Optimizing plant N use efficiency could improve agro-environmental balance. In the current paper, we studied the impact of the marine (DPI4913) and fungal (AF086) extracts (biostimulants) applied on leaves on growth, N absorption and N fluxes in durum wheat in field and greenhouse experiments. In the field, 15NO3− and 15NH4+ were injected into the soil; in the greenhouse, N of the flag-leaf was labelled with 15NH4+. Flag-leaf senescence was studied by estimating leaf chlorophyll concentration. In greenhouse, biostimulants increased grain yield, total N in plant and the proportion of plant N in ears. When water was limited in greenhouse experiment, neither biostimulants had any effect. In the field, DPI4913 increased soil fertilizer-derived 15N accumulated in grains. In the greenhouse, biostimulants increased the proportion of 15N applied to the flag-leaf recovered in grains and accelerated leaf senescence. For plants treated with biostimulants, flag-leaf N resorption increased. Biostimulants had a larger positive impact on mineral N root uptake than on N remobilization. In conclusion, our study has shown that DPI4913 and AF086 can promote plant growth and grain yield, N uptake and remobilization. Thus, these biostimulants could be used to optimize durum wheat N fertilization and contribute to reduced N losses.


1993 ◽  
Vol 28 (3-5) ◽  
pp. 91-99
Author(s):  
R. A. Wagner ◽  
M. G. Heyl

As part of the Sarasota Bay National Estuary Program (NEP) evaluation of environmental problems, modeling tools were used to estimate pollution loadings from diverse sources, including surface runoff, baseflow, wastewater treatment plant discbarges, septic tanks, and direct deposition of rainfall on the bay surface. After assessing the relative impacts of the pollution sources, alternative management strategies were identified and analyzed. These strategies focused primarily on future development, and included structural and nonstructural best management practices (BMPs), as well as a regional wastewater treatment plan. Loading reductions, along with planning-level cost data and estimates of feasibility and other potential benefits, were used to identify the most promising alternatives.


Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 330
Author(s):  
Jean-Christophe Castella ◽  
Sonnasack Phaipasith

Road expansion has played a prominent role in the agrarian transition that marked the integration of swidden-based farming systems into the market economy in Southeast Asia. Rural roads deeply altered the landscape and livelihood structures by allowing the penetration of boom crops such as hybrid maize in remote territories. In this article, we investigate the impact of rural road developments on livelihoods in northern Laos through a longitudinal study conducted over a period of 15 years in a forest frontier. We studied adaptive management strategies of local stakeholders through the combination of individual surveys, focus group discussions, participatory mapping and remote-sensing approaches. The study revealed the short-term benefits of the maize feeder roads on poverty alleviation and rural development, but also the negative long-term effects on agroecosystem health and agricultural productivity related to unsustainable land use. Lessons learnt about the mechanisms of agricultural intensification helped understanding the constraints faced by external interventions promoting sustainable land management practices. When negotiated by local communities for their own interest, roads may provide livelihood-enhancing opportunities through access to external resources, rather than undermining them.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Robert Knoerl ◽  
Emanuele Mazzola ◽  
Fangxin Hong ◽  
Elahe Salehi ◽  
Nadine McCleary ◽  
...  

Abstract Background Chemotherapy-induced peripheral neuropathy (CIPN) negatively affects physical function and chemotherapy dosing, yet, clinicians infrequently document CIPN assessment and/or adhere to evidence-based CIPN management in practice. The primary aims of this two-phase, pre-posttest study were to explore the impact of a CIPN clinician decision support algorithm on clinicians’ frequency of CIPN assessment documentation and adherence to evidence-based management. Methods One hundred sixty-two patients receiving neurotoxic chemotherapy (e.g., taxanes, platinums, or bortezomib) answered patient-reported outcome measures on CIPN severity and interference prior to three clinic visits at breast, gastrointestinal, or multiple myeloma outpatient clinics (n = 81 usual care phase [UCP], n = 81 algorithm phase [AP]). During the AP, study staff delivered a copy of the CIPN assessment and management algorithm to clinicians (N = 53) prior to each clinic visit. Changes in clinicians’ CIPN assessment documentation (i.e., index of numbness, tingling, and/or CIPN pain documentation) and adherence to evidence-based management at the third clinic visit were compared between the AP and UCP using Pearson’s chi-squared test. Results Clinicians’ frequency of adherence to evidence-based CIPN management was higher in the AP (29/52 [56%]) than the UCP (20/46 [43%]), but the change was not statistically significant (p = 0.31). There were no improvements in clinicians’ CIPN assessment frequency during the AP (assessment index = 0.5440) in comparison to during the UCP (assessment index = 0.6468). Conclusions Implementation of a clinician-decision support algorithm did not significantly improve clinicians’ CIPN assessment documentation or adherence to evidence-based management. Further research is needed to develop theory-based implementation interventions to bolster the frequency of CIPN assessment and use of evidence-based management strategies in practice. Trial registration ClinicalTrials.Gov, NCT03514680. Registered 21 April 2018.


2002 ◽  
Vol 82 (3) ◽  
pp. 507-512 ◽  
Author(s):  
H. Wang ◽  
M. R. Fernandez ◽  
F. R. Clarke ◽  
R. M. DePauw ◽  
J. M. Clarke

Although leaf spotting diseases have been reported to have a negative effect on grain yield and seed characteristics of wheat (Triticum spp.), the magnitude of such effects on wheat grown on dryland in southern Saskatchewan is not known. A fungicide experiment was conducted at Swift Current (Brown soil) and Indian Head (Black soil) from 1997 to 1999 to determine the effect of leaf spotting diseases on yield and seed traits of wheat. Two fungicides, Folicur 3.6F and Bravo 500, were applied at different growth stages on three common wheat (Triticum aestivum L.) and three durum wheat (T. turgidum L. var durum) genotypes. Fungicide treatments generally did not affect yield, kernel weight, test weight or grain protein concentration, and these effects were relatively consistent among genotypes. Folicur applied at head emergence in 1997 and at flag leaf emergence and/or head emergence in 1998 increased yield at Indian Head (P < 0.05). Fungicides applied at and before flag leaf emergence tended to increase kernel weight. Grain protein concentration increased only in treatments of Bravo applications at Indian Head in 1998. These results suggested that under the dryland environment and management in southern Saskatchewan leaf spotting diseases generally have a small effect on yield, kernel weight, test weight and protein concentration. Key words: Wheat, leaf spotting diseases, fungicide, yield


2018 ◽  
Vol 28 (4) ◽  
pp. 436-444 ◽  
Author(s):  
Raul I. Cabrera ◽  
James E. Altland ◽  
Genhua Niu

Scarcity and competition for good quality and potable water resources are limiting their use for urban landscape irrigation, with several nontraditional sources being potentially available for these activities. Some of these alternative sources include rainwater, stormwater, brackish aquifer water, municipal reclaimed water (MRW), air-conditioning (A/C) condensates, and residential graywater. Knowledge on their inherent chemical profile and properties, and associated regional and temporal variability, is needed to assess their irrigation quality and potential short- and long-term effects on landscape plants and soils and to implement best management practices that successfully deal with their quality issues. The primary challenges with the use of these sources are largely associated with high concentrations of total salts and undesirable specific ions [sodium (Na), chloride (Cl), boron (B), and bicarbonate (HCO3−) alkalinity]. Although the impact of these alternative water sources has been largely devoted to human health, plant growth and aesthetic quality, and soil physicochemical properties, there is emergent interest in evaluating their effects on soil biological properties and in natural ecosystems neighboring the urban areas where they are applied.


Sign in / Sign up

Export Citation Format

Share Document