Evaluating carbon dynamics and microbial activity in arctic soils under warmer temperatures

2008 ◽  
Vol 88 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Maren Oelbermann ◽  
Michael English ◽  
Sherry L Schiff

A large portion of carbon (C) is stored in the world’s soils, including those of peatlands, wetlands and permafrost. However, there is disagreement regarding the effects of climate change on the rate of organic matter decomposition in permafrost soils of the arctic. In this study it was hypothesized that soil exposed to a higher ambient temperature would have a greater flux of CO2 as well as a change in the metabolic diversity of culturable soil microorganisms. To evaluate this hypothesis we determined soil C dynamics, soil microbial respiration and activity, and 13C and 15N fractionation in laboratory incubations (at 14 and 21°C) for an organic-rich soil (Mesic Organic Cryosol) and a mineral soil (Turbic Cryosol) collected at the Daring Lake Research Station in Canada’s Northwest Territories. Soil organic C (SOC) and nitrogen (N) stocks (g m-2) and concentration (%) were significantly different (P < 0.05) between soil horizons for both soil types. Stable isotope analysis showed a significant enrichment in δ13C and δ15N with depth and a depletion in δ13C and δ15N with increasing SOC and N concentration. In laboratory incubations, microbial respiration showed three distinct phases of decomposition: a phase with a rapidly increasing rate of respiration (phase 1), a phase in which respiration reached a peak midway through the incubation (phase 2), and a phase in the latter part of the incubation in which respiration stabilized at a lower flux than that of the first phase (phase 3). Fluxes of CO2 were significantly greater at 21°C than at 14°C. The δ13C of the evolved CO2 became significantly enriched with time with the greatest enrichment occurring in phase 2 of the incubation. Soil microbial activity, as measured using Biolog EcoplatesTM, showed a significantly greater average well color development, richness, and Shannon index at 21°C; again the greatest change occurred in phase 2 of the incubation. Principal component analysis (PCA) of the Biolog data also showed a change in the distinct clustering of the soil microbial activity, showing that C sources from the soil were metabolized differently with time at 21 than at 14°C, and between soil horizons. Our results show that Canadian arctic soils contain large stores of C, which readily decompose, and that substantial increases in CO2 emissions and changes in the metabolic diversity of culturable soil microorganisms may occur when ambient temperatures increase from 14 to 21°C. Key words: CO2 flux, C fractionation, global warming, soil organic C and N, stable isotopes

2013 ◽  
Vol 726-731 ◽  
pp. 3653-3656 ◽  
Author(s):  
Hui Lun Chen ◽  
Jun Yao ◽  
Fei Wang

In this study, an isothermal microcalorimetry was used to demonstrate the long-term impact of dimethyl phthalate (DMP), dipropyl phthalate (DBP), dioctyl phthalate (DOP) and dicyclohexyl phthalate (DEHP) on the soil microbial activity. Generally, the toxicity order of four phthalate esters (PAEs) is DBP>DMP>DOP>DEHP. The PAEs show inhibitory effect when the soil was exposed to PAEs for 10 days and the PAEs will have a small stimulate effect after 30 days, and then the PAEs inhibit the soil microorganisms again. The effect of PAEs on soil microbial activity is almost the same as those on urease activity.


2020 ◽  
Vol 12 (9) ◽  
pp. 199
Author(s):  
Maria Josiane Martins ◽  
Tânia Santos Silva ◽  
Igor Paranhos Caldas ◽  
Geovane Teixeira de Azevedo ◽  
Isabelle Carolyne Cardoso ◽  
...  

The allocation of the large amount of swine waste from farms is an international concern. An efficient way of managing such waste is its use in farming. It is already known that the incorporation of organic waste into the soil significantly increases the microbial population. Therefore, the objective was to evaluate the impact of the use of swine manure on the soil microbiota in a Eutrophic Oxisol. The experiment was set up in a completely randomized design in a 6 &times; 4 factorial scheme (sixconcentrations of swine manure and four evaluation periods) with four replications. We evaluate the following characteristics: microbial respiration (C-CO2), microbial biomass (&micro;C g-1 soil) and pH.: microbial respiration (C-CO2), microbial biomass (&micro;C g-1 soil) and pH. A significant effect was found in the interaction between concentrations and time of incubation (p &lt; 0.05) of swine manure on microbial activity in the soil. The amount of microbial carbon increased as a function of increased levels of liquid swine manure. No interaction was observed between concentrations and time of incubation for the pH. The evaluation of the isolated factors allowed to observe that the pH decreased as the doses of manure were incremented. Higher and lower pH values were found after 5 and 30 days of incubation. The application of liquid swine manure up to 6000 L ha-1 increases the release of CO2 and carbon in the microbial biomass. The applications of liquid swine manure cause a gradual reduction in soil pH.


2020 ◽  
Author(s):  
Patrick F. Sullivan ◽  
Madeline C. Stokes ◽  
Cameron K. McMillan ◽  
Michael N. Weintraub

It is well established that soil microbial communities remain active during much of the Arctic winter, despite soil temperatures that are often well below −10°C1. Overwinter microbial activity has important effects on global carbon (C) budgets2, nutrient cycling and vegetation community composition3. Microbial respiration is highly temperature sensitive in frozen soils, as liquid water and solute availability decrease rapidly with declining temperature4. Thus, temperature is considered the ultimate control on overwinter soil microbial activity in the Arctic. Warmer winter soils are thought to yield greater microbial respiration of available C, greater overwinter CO2 efflux and a flush of nutrients that could be available for plant uptake at thaw3. Rising air temperature, combined with changes in timing and/or depth of snowpack development, is leading to warmer Arctic winter soils5. Using observational and experimental approaches in the field and in the laboratory, we demonstrate that persistently warm winter soils can lead to labile C starvation of the microbial community and reduced respiration rates, despite the high C content of most arctic soils. If Arctic winter soil temperatures continue to rise, microbial C limitation will reduce cold season CO2 emissions and alter soil nutrient cycling, if not countered by greater labile C inputs.


2019 ◽  
Vol 40 (4) ◽  
pp. 1405
Author(s):  
José Ilmar Tínel de Carvalho Junior ◽  
Maria Isidória Silva Gonzaga ◽  
André Quintão de Almeida ◽  
Jady Araújo ◽  
Lúcia Catherinne Oliveira Santos

Biochar has shown much potential to be used as soil amendment and conditioner as well as an effective alternative to waste disposal. However, the effect of biochar on soil organic matter varies according to the type of feedstock. This study aimed to evaluate the influence of different types and rates of application of biochar on soil microbial activity and on soil carbon priming effect. The incubation experiment was set up as a completely randomized design in a 2 x 5 factorial scheme, with two types of biochar (coconut husk and orange bagasse) and five rates of application (0, 5, 10, 15 and 30 t ha-1), with three replications. Soil microbial activity was evaluated through the concentration of CO2 released from the soil during a period of 130 days. Carbon priming effect was determined based on the CO2 respired in the biochar treated soil and in the control soil. Both biochars increased the total oxidizable carbon in the soil when they were applied at 30 t ha-1, however, the orange bagasse biochar was more effective than the coconut biochar. Coconut biochar increased the cumulative soil microbial respiration at all rates of application during the incubation period, therefore, it contributed to a positive carbon priming effect and should be applied with caution to avoid excessive loss of carbon from the soil. Orange bagasse biochar had little influence on the cumulative CO2 emission, except at 15 t ha-1, which increased soil microbial activity.


2020 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Ana Paula Justiniano Régo ◽  
Valdemar Luiz Tornisielo

Concern about soil quality has been increasing due to environmental impacts from anthropogenic actions. The imbalance between its components alters activities in ecosystems. One of the main actions affecting soil quality is the presence of heavy metals, impairing the functioning of the ecosystem. This work evaluated the impacts of metal-contaminated soil on microbial activity after dam failure in Minas Gerais State, Brazil. Microbial respiration measurements and colony quantifications were used for evaluations. Thus, it is hoped that through these bioindicators, we can assess the quality of the environment and from these biostimulators restore the environmental balance, benefiting local communities affected by the disaster. After microbial biostimulation of the soil, there was an increase in the number of bacterial colonies as well as greater accumulation of CO2 over the days. Thus, the addition of nutrients to the metal-impacted soil was essential for initiating the restoration of the affected ecosystem equilibrium.


2019 ◽  
Vol 46 (1) ◽  
pp. 42-49 ◽  
Author(s):  
H. M. Chalwe ◽  
O. I. Lungu ◽  
A. M. Mweetwa ◽  
E. Phiri ◽  
S. M. C. Njoroge ◽  
...  

ABSTRACT Peanut production in Zambia is often characterized by low yields and high aflatoxin incidence in harvested kernels. Soil amendments such as farmyard manure have shown potential to increase yields and reduce pre-harvest aflatoxin incidence. The aim of the current study was to evaluate the effects of composted cattle manure on soil properties that relate to yield and pre-harvest aflatoxin contamination of peanut kernels. Research evaluated the effects of composted cattle manure on soil respiration, plant-available water (PAW), peanut yield and pre-harvest aflatoxin contamination in a field experiment conducted in two successive rain-fed cropping seasons starting in December, 2015 and ending in April 2017, in Chongwe District, Zambia. Six (6) levels of compost were incorporated into the top 10 cm of the soil at rates of 0, 4.5, 12.0, 19.5, 27.0, and 34.5 metric tons/ha 1 wk before planting. There was a strong positive relationship between levels of compost and soil microbial respiration (R2=0.84) and PAW (R2=0.86). Secondly, compost manure was associated with increases in pod (R2=0.65) and kernel (R2=0.61) yield. The kernel yield potential of the planted cultivar was achieved at the rate of 12 metric tons per ha. Thirdly, there was a reduction in total aflatoxin levels with increasing levels of compost (R2=0.85). The improvement in peanut yield and the decrease in aflatoxin concentrations in kernels can be attributed to the improvement in soil moisture retention capacity and soil microbial activity arising from manure amendments. This study demonstrated the potential of compost manure to increase soil microbial activity, PAW, peanut yield and minimize aflatoxin contamination at field level.


Soil Research ◽  
2013 ◽  
Vol 51 (1) ◽  
pp. 68 ◽  
Author(s):  
Manpreet S. Mavi ◽  
Petra Marschner

Addition of carbon (C) and nitrogen (N) to soil can enhance microbial tolerance to salinity, but it is not known if salinity changes the response of microbial activity and biomass to addition of C and N, or how nutrient addition affects microbial tolerance to salinity. We prepared salinity treatments of non-saline soil [electrical conductivity (EC1 : 5) 0.1 dS m–1] without salt addition or adjusted to four salinity levels (2.5, 5.0, 7.5, 10 dS m–1) using a combination of CaCl2 and NaCl. The soils were amended with 2.5 mg C g–1 as glucose or as mature wheat straw (C/N ratio 47 : 1), with NH4Cl added to glucose to achieve a C/N ratio similar to that of wheat straw, or with NH4Cl added to glucose or wheat straw to achieve a C/N ratio of 20. Soil respiration was measured over 30 days. Microbial biomass C and N (MBC, MBN), dissolved organic C (DOC), and total dissolved N (TDN) were measured on day 30. Cumulative respiration and MBC concentration decreased with increasing EC, less so with glucose than with wheat straw. The MBC concentration was more sensitive to EC than was cumulative respiration, irrespective of C source. Addition of N to glucose and wheat straw to bring the C/N ratio to 20 significantly decreased cumulative respiration and MBC concentration at a given EC. This study showed that in the short term, addition of a readily available and easily decomposable source of energy improves the ability of microbes to tolerate salinity. The results also suggest that in saline soils, irrespective of the C substrate, N addition has no impact, or a negative impact, on microbial activity and growth.


2008 ◽  
Vol 23 (2) ◽  
pp. 171-176 ◽  
Author(s):  
R.L. Haney ◽  
W.F. Brinton ◽  
E. Evans

AbstractThe measurement of soil carbon dioxide respiration is a means to gauge biological soil fertility. Test methods for respiration employed in the laboratory vary somewhat, and to date the equipment and labor required have somewhat limited more widespread adoption of such methodologies. The purpose of this research is to compare the results of measured soil CO2 respiration using three methods: (1) titration method; (2) infrared gas analysis (IRGA); and (3) the Solvita gel system for soil CO2 analysis. We acquired 36 soil samples from across the USA for comparison, which ranged in pH from 4.5 to 8.5, organic C from 0.8 to 4.6% and the clay content from 6 to 62%. All three methods were highly correlated with each other after 24-h of incubation (titration and Solvita r2=0.82, respirometer and Solvita r2=0.79 and titration versus respirometer r2=0.95). The 24-h (1-day) CO2 release from all three methods was also highly correlated to both basal soil respiration (7–28 days) and cumulative 28-day CO2 respiration. An additional 24 soil samples were acquired and added to the original 36, for a total of 60 soil samples. These samples were used for calibration of the Solvita gel digital color reader results using CO2-titration results and regression analysis. Regression analysis resulted in the equation y=20.6∗(Solvita number)−16.5 with an r2 of 0.83. The data suggest that the Solvita gel system for soil CO2 analysis could be a simple and easily used method to quantify soil microbial activity. Applications may also exist for the gel system for in situ measurements in surface gas chambers. Once standardized soil sampling and laboratory analysis protocols are established, the Solvita method could be easily adapted to commercial soil testing labs as an index of soil microbial activity.


Sign in / Sign up

Export Citation Format

Share Document