EFFETS DES REGIMES HYDRIQUES ET DES pH DU SOL SUR LA REPONSE AU MOLYBDENE DE LA LUZERNE

1986 ◽  
Vol 66 (3) ◽  
pp. 421-435
Author(s):  
J. L. DIONNE ◽  
A. R. PESANT

The objectives of this study were to determine the changes in response of alfalfa (cv. Saranac) to molydbenum applications from variations in soil pH and soil moisture. To achieve these ends the test crop was grown on three replicates of the following treatments: Three soils (Ste Rosalie clay, Greensboro loam and Danby sandy loam) adjusted to approximately pH 5.0, 6.5, and 7.5 fertilized at 0.0, 0.1, 0.2 and 0.3 mg Mo kg−1 of soil and maintained at three moisture levels: dry, optimal and saturated. Yields were not affected by molybdenum applications regardless of soil type, soil pH or soil moisture regimes. Mo content of alfalfa increased linearly with rates of Mo from 0.2 ppm to 23 ppm Mo. Liming soil to pH 7.2 produced the same increase of Mo content in alfalfa as applying Mo at the rate of 0.2 mg kg−1 to acid soils. Mo content of alfalfa was also slightly increased by soil moisture. A Mo content of 20 ppm or more was obtained as a result of the combined effect of molybdenum application, liming and soil moisture regimes. The exchangeable Mo content found in soils after the experiment increased with rate of Mo but decreased with increasing soil pH. The uptake of molybdenum was increased so much by liming that the Mo left in soil after cropping was decreased as soil pH increased. Key words: Mo content of soil, Mo content of alfalfa, soil pH, soil moisture, alfalfa

1985 ◽  
Vol 65 (2) ◽  
pp. 269-282 ◽  
Author(s):  
J. L. DIONNE ◽  
A. R. PESANT

Alfalfa (Medicago sativa L. ’Saranac’) was grown on Ste. Rosalie clay, Greensboro loam and St. Jude sand adjusted to about pH 5.0, 6.5 and 7.5 in a greenhouse experiment, to determine the changes in response of alfalfa to aluminum and manganese resulting from variations in soil pH and soil moisture. Rates of Mn were equivalent to 0 and 200 kg∙ha−1 and rates of Al were 0, and 100 kg∙ha−1. Three soil moisture regimes were used: (1) Optimum with soil moisture between field capacity (FC) and 70% of this value. (2) Wet: with soil moisture between saturation point (SP) and FC. (3) Very wet: with soil moisture between saturation point and a value half way between SP and FC. Manganese applied on acid soils (pH 5.2) under optimum soil moisture regimes decreased alfalfa yields by 3% only, compared to a 62% decrease in alfalfa yields by Mn applied on acid soils of the two high soil moisture regimes. This was due to a high level of Mn in alfalfa on the wet acid soils. A large quantity of aluminum was also found in alfalfa grown in acid soils along with a high concentration of "extractable" aluminum. This resulted in a 54% reduction of alfalfa yields. Content of Al and Mn in alfalfa top and in soils was decreased sharply by liming soils at pH of 6.5 or 7.5. On soils limed to a pH of about 7.0 alfalfa survived at high levels of Mn and Al such as frequently encountered in some acid and very wet soils. Key words: Soil Mn, soil Al, soil pH, soil moisture, alfalfa


Soil Research ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 341 ◽  
Author(s):  
Craig A. Scanlan ◽  
Ross F. Brennan ◽  
Mario F. D'Antuono ◽  
Gavin A. Sarre

Interactions between soil pH and phosphorus (P) for plant growth have been widely reported; however, most studies have been based on pasture species, and the agronomic importance of this interaction for acid-tolerant wheat in soils with near-sufficient levels of fertility is unclear. We conducted field experiments with wheat at two sites with acid soils where lime treatments that had been applied in the 6 years preceding the experiments caused significant changes to soil pH, extractable aluminium (Al), soil nutrients and exchangeable cations. Soil pH(CaCl2) at 0–10cm was 4.7 without lime and 6.2 with lime at Merredin, and 4.7 without lime and 6.5 with lime at Wongan Hills. A significant lime×P interaction (P<0.05) for grain yield was observed at both sites. At Merredin, this interaction was negative, i.e. the combined effect of soil pH and P was less than their additive effect; the difference between the dose–response curves without lime and with lime was greatest at 0kgPha–1 and the curves converged at 32kgPha–1. At Wongan Hills, the interaction was positive (combined effect greater than the additive effect), and lime application reduced grain yield. The lime×P interactions observed are agronomically important because different fertiliser P levels were required to maximise grain yield. A lime-induced reduction in Al phytotoxicity was the dominant mechanism for this interaction at Merredin. The negative grain yield response to lime at Wongan Hills was attributed to a combination of marginal soil potassium (K) supply and lime-induced reduction in soil K availability.


1998 ◽  
Vol 78 (4) ◽  
pp. 571-576 ◽  
Author(s):  
B. R. Buttery ◽  
C. S. Tan ◽  
C. F. Drury ◽  
S. J. Park ◽  
R. J. Armstrong ◽  
...  

In field tests we have observed year-to-year differences in the severity of the effects of soil compaction on nodulation and growth of common bean; these differences appeared to be related to the amount of rainfall during the growing season. We decided to use better controlled conditions in the greenhouse, and extend the scope of the study to another legume crop and a different soil type, in order to investigate the hypothesis that copious water supply alleviates the adverse effects of soil compaction on nodulation and plant growth.The effects of two levels of soil compaction and of high and low water supply on the growth and nodulation of common bean and soybean were investigated in separate pot tests using a Fox sandy loam and a Brookston clay loam soil.Root growth of both species was severely restricted by dry compacted conditions. Plant growth as a whole was clearly reduced by both increased compaction and by reduced water supply, presumably mediated by the effects on root growth. The effect of reduced water supply was more severe in the highly compacted pots, and more severe in the clay loam than in the sandy loam.In the sandy loam, low moisture reduced nodule numbers and weights in both species, while increased bulk density reduced the numbers of nodules but not the dry weights. In the clay loam, nodule weights and numbers were very low, presumably, owing to high levels of nitrate, which may have resulted from mineralization of soil organic matter during storage.A generous supply of water obviously alleviated some of the adverse effects of soil compaction on plant growth. This is in general agreement with results of earlier field trials, where severity of the effects of soil compaction varied with the quantity of rainfall. Key words: Soybean, common bean, soil compaction, soil moisture, nodulation, bulk density


2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Donata Drapanauskaitė ◽  
Kristina Bunevičienė ◽  
Romas Mažeika

Liming of acid soils is one of the most effective and multipurpose ways to improve soil properties. Liming changes the agrochemical properties, nutrient content and uptake. The aim of the research was to evaluate the influence of different liming materials on soil pH and spring barley yield under different soil moisture conditions. A vegetation experiment was performed until full yield formation under two different soil moisture conditions: optimum 17–20% and excess 28–31%. Liming materials of different physical forms and chemical composition were used in the experiment: ground, crushed and granulated liming materials, which differed in their chemical composition. Ground liming material had the highest neutralizing value (52.2 ± 0.40%) and reactivity (99.5 ± 0.18%), and crushed liming material had the lowest reactivity (10.0 ± 0.23%) and the highest (10.33 ± 0.148) magnesium content. Liming with ground liming material was the most effective and fastest way to neutralize soil acidity. It increased the soil pH from 4.44 ± 0.191 to 6.17 ± 0.042 under optimum moisture conditions and from 4.46 ± 0.156 to 6.76 ± 0.537 under excess moisture conditions after 4 weeks of liming. When spring barley was grown to full yield, a significant increase in yield in both years was found by liming with granulated liming material ø 2–5 mm in both soil moisture conditions, and the highest mass of 1,000th grain was obtained in the treatments limed with granulated liming material with potassium additive.


1994 ◽  
Vol 19 (1) ◽  
pp. 313-314
Author(s):  
Stanley R. Swier

Abstract Two formulations of Merit were compared for efficacy against Japanese beetle grubs on a golf course fairway in Amherst, NH. Plots were 10 × 10 ft, replicated 4 times in an RCB design. Treatments were applied 26 Apr and rated 24 Sep. The granular formulation was applied with a homemade salt shaker. The wettable powder was applied in a watering can at a volume of 5 gal water/1000 ft2. After application, plots were irrigated with 0.5 inches water. Plots were rated by counting the number of live grubs in a 3 ft2 sample. Conditions at the time of treatment were: air temperature, 53.3°F; soil temperature, 2 inches, 50.8°F; thatch depth, 0.5 inch; soil pH, 5.8; slope, 1%; soil texture, sandy loam, 53% sand, 43% silt, 4% clay; soil organic matter, 6.5% soil moisture, 19.4%.


1988 ◽  
Vol 110 (1) ◽  
pp. 5-11 ◽  
Author(s):  
R. L. Yadav ◽  
S. R. Prasad

SummaryTo study the response of three sugarcane genotypes (CO 1148, COJ 64 and CO 1158) to variations in moisture availability in sandy loam soil (entisol), field trials were conductedat Lucknow (26·5° N, 80·5° E, 120 m altitude) during 1984–5 and 1985–6. Three moisture regimes, i.e. wet (irrigation at 75% available soil moisture (ASM)), moist (irrigation at 50% ASM) and dry (irrigation at 25% ASM) were maintained during the pre-monsoon (before June) period in spring-planted (February-March) sugarcane. During the summer months (until June)the variety CO 1148 had a significantly greater sheath moisture percentage than COJ 64 and CO 1158. Under stress conditions, leaf area index was reduced most in COJ 64 and least in CO 1148.Underground shoots and roots grew faster in CO 1148, and the growth of above-ground parts was quicker in COJ 64. Compared with the 75% ASM regime the reduction in cane yield in the 25% regime was more in COJ 64 and CO 1158 (31 t/ha) than in CO 1148 (12 t/ha). The water requirement of COJ 64 was greater than that of the other varieties. Therefore, for higheryields COJ 64 needed frequent irrigation whereas CO 1148 performed well even under moderate irrigation (50% ASM).


Weed Science ◽  
1989 ◽  
Vol 37 (3) ◽  
pp. 428-433 ◽  
Author(s):  
Andrew J. Goetz ◽  
Robert H. Walker ◽  
Glenn Wehtje ◽  
Ben F. Hajek

Soil thin-layer chromatography and a soil solution technique were used to evaluate chlorimuron adsorption and mobility in five Alabama soils. The order of adsorption was atrazine > metribuzin > chlorimuron; mobility was chlorimuron > metribuzin > atrazine. The order of adsorption of chlorimuron in the five soils was Sumter clay > Eutaw clay > Lucedale fine sandy loam > Decatur silt loam > Dothan sandy loam, and Rfvalues were 0.63, 0.73, 0.69, 0.76, and 0.80, respectively. Chlorimuron mobility and adsorption were not highly correlated to any one soil type. Adsorption of all herbicides was inversely related to soil pH. Maximum chlorimuron adsorption in the Hiwassee loam was attributed to the high hematite and gibbsite content of the soil.


1992 ◽  
Vol 72 (1) ◽  
pp. 147-162 ◽  
Author(s):  
Hélène V. Petit ◽  
A. R. Pesant ◽  
G. M. Barnett ◽  
W. N. Mason ◽  
J. L. Dionne

Alfalfa (Medicago sativa L. ’Saranac’) was grown in a greenhouse on Ste-Rosalie clay and Danby gravelly sandy loam to determine the effects of phosphorus fertilization, air temperature, soil moisture regime and soil pH on chemical composition and plant morphology. The following treatments were applied in factorial combination: three moisture regimes (1, semi-dry, with soil moisture between field capacity or 100% of available water and wilting point or 0% of available water; 2, optimal, between field capacity and 70% of available water; 3, wet, between saturation point and field capacity), three rates of phosphorus in the form of disodium phosphate (0, 12.5 and 25.0 P kg−1 of dry soil) and three soil pH levels (natural, near 5.4, 6.5 and 7.5). Half the alfalfa was grown in a warm greenhouse section with a minimum daytime temperature of 25 °C and 19 °C at night and the other half was grown in a cool section with a daytime minimum of 15 °C and 9 °C at night. Quality of alfalfa was generally improved by water deficit as shown by decreased concentrations of acid detergent fiber (ADF) and acid detergent lignin (ADL) and increased concentrations of crude protein (CP). Cold temperatures decreased ADF content which indicates that quality of alfalfa grown under cold compared to warm temperature regimes is better. Phosphorus fertilization seemed to have more effects on plant morphology and quality under cold than warm temperature regimes. In general, concentrations of CP, ADF and ADL, stem length, leaf area and the number of stems increased in parallel with soil pH. The data indicate that low temperature and low soil moisture regimes were generally associated with higher quality alfalfa than were high temperature and wet soil moisture regimes.Key words: Alfalfa, soil moisture regime, air temperature, phosphorus fertilization, soil pH


1996 ◽  
Vol 76 (4) ◽  
pp. 857-859 ◽  
Author(s):  
K. R. Sanderson ◽  
J. B. Sanderson ◽  
J. A. Ivany

Marketable yield of cabbage (Brossica oleracea L. var. capitata) was significantly increased from 11 to 14% by a soil application of sulphur-containing materials, potassium sulphate and gypsum, on sandy loam to loamy sand soils in Prince Edward Island. Calcite had no effect on yield. Gypsum resulted in the highest yield on five sites. Potassium sulphate and gypsum increased leaf S concentration 0.70 and 1.45% respectively. Gypsum decreased while calcite increased soil pH. Key words: Cabbage, calcite, calcium, gypsum, potassium sulphate, sulphur


Sign in / Sign up

Export Citation Format

Share Document