Effects of N rates and harvest dates on the efficiency of 15N-labelled fertilizer on early harvested potatoes (Solanum tuberosum L.)

1991 ◽  
Vol 71 (4) ◽  
pp. 519-532 ◽  
Author(s):  
T. Sen Tran ◽  
M. Giroux

The efficiency of 15N-labelled fertilizer on early harvested potaotes (Solanum tuberosum L., 'Norland') was studied in field experiments on two soil series (Saint-Damase loamy sand and Soulanges sandy loam) during a 2-yr period. The 15NH415NO3 fertilizer was band applied at 0 and 140 kg N ha−1 in 1985 and 0, 70, 140 kg ha−1 in 1986 and four harvests were made during the growing season. The foliage was in full canopy development at 65 or 75 d and its dry matter yield increased significantly with the application of fertilizer-N. At this time about 70% of the total N uptake was in the foliage. From this peak, foliage N decreased gradually with time to about 28% at 95 or 100 d as N was transferred to the tubers. The N concentration in tubers was nearly constant during the growing season. As tuber dry matter increased at each successive harvest, N uptake increased proportionally. Between the first two harvest dates, from 65 to 75 d, the average rates of N accumulation in tubers were 2.1 and 4.5 kg N ha−1 d−1 for the control and N fertilized plot, respectively. The root dry matter and N concentration increased with fertilizer-N and were generally lowest on the final harvest day. Marketable tuber yield responded to N fertilization on the severely N-deficient fields in 1985. But in 1986, the 140 kg N ha−1 treatment delayed the growth of marketable tubers. The percentage of N derived from fertilizer (Ndff) was also very high in 1985 fields and was at a maximum at 65 d (64–69%) with the 140 kg N ha−1 treatment. These values were lower for the same treatments in 1986 fields (39%) because of the larger amounts of available N in soils. The maximum coefficient of utilization (ICU) of labelled fertilizer N was 72–76% in 1985 and 63–68% in 1986. At the final harvest, about 36–50% of the applied fertilizer-N was found in the tubers. Key words: Nitrogen fertilization, 15N-labelled fertilizer, N use efficiency, harvest periods, potato

1995 ◽  
Vol 43 (4) ◽  
pp. 419-433
Author(s):  
H. Biemond ◽  
J. Vos ◽  
P.C. Struik

Three greenhouse trials and one field trial were carried out on Brussels sprout cv. Icarus SG2004 in which the treatments consisted of different N amounts and application dates. DM and N accumulation in stems, apical buds and groups of leaf blades, petioles and sprouts were measured frequently throughout crop growth. Total amounts of accumulated DM and N were affected by amount of N applied and date of application, but the final harvest indexes for DM and N (0.10-0.35 and 0.20-0.55, respectively) were not significantly affected by treatments in most experiments. Nitrate N concentrations were only high (up to about 2%) shortly after planting. The total N concentration of leaf blades and petioles increased with increasing leaf number. This increase resulted from a decreasing N concentration during the leaf's life. The total N concentration in sprouts changed little with leaf number.


1994 ◽  
Vol 122 (3) ◽  
pp. 385-391 ◽  
Author(s):  
K. F. Ng Kee Kwong ◽  
J. Deville

SUMMARYThe patterns of N uptake and dry matter synthesis by sugarcane (Saccharum hybrid spp.) were studied at four locations in Mauritius with 15N–labelled ammonium sulphate (100 kg N/ha) applied either in a single dressing in September or in two split applications in September and the following February. More than 80% of the total N recovered at harvest (100–120 kgN/ha) was absorbed by the sugarcane during an active uptake period from October to January. Split application prolonged this active N uptake until April only and had no effect on dry matter accumulation. While total Nabsorbed by above-ground sugarcane showed no decline over time, 10–20 kg N/ha of the 15N–labelled N was lost from the green tops even when the N was applied on two occasions. The fertilizer N losses from above-ground sugarcane were, however, not evident when fertilizer N recovery with time was studied by the difference method. In view of the observed losses of fertilizer N from the aerial parts of sugarcane, measurement of fertilizer N recovery at harvest by the N isotope dilution technique underestimates fertilizer N uptake by sugarcane and attributes too large a fraction of N loss to denitrification/volatilization of NH3.


1990 ◽  
Vol 70 (2) ◽  
pp. 461-472 ◽  
Author(s):  
B. A. DARROCH ◽  
D. B. FOWLER

Norstar winter wheat (Triticum aestivum L.) was examined in 11 trials with the objective of determining the pattern of dry matter and nitrogen (N) accumulation in dryland stubbled-in winter wheat grown in Saskatchewan. In all 4 yr of this study, replicated no-till field trials were supplemented with 0, 34, 67 and 100 kg N ha−1 applied as ammonium nitrate (34-0-0) in early spring. A fifth treatment of 200 kg N ha−1 was evaluated in the final year of trials. Plant samples were collected at 2-wk intervals. Early season N uptake was more rapid than dry matter accumulation and 89% of the total N, compared to 70% of the total dry matter, was present at anthesis (Zadoks growth stages 60–68). Poor soil moisture availability limited N uptake after anthesis. Consequently, N uptake during the growing season was best described by a quadratic equation, Nitrogen yield = −29.1 + 3.02 Z − 0.018 Z2, where Z represents the Zadoks growth stage. Nitrogen concentrations of the stems and leaves decreased during the growing season while the N concentration of spikes varied among trials. Nitrogen fertilization often produced large increases in tissue N concentration at the beginning of the growing season. These differences decreased with time and by the end of the season tissue N concentrations were usually similar for all N rates. In general, when residual soil N levels were low to intermediate and rainfall was adequate, N fertilization increased dry matter yield, plant N yield, grain yield and grain protein yield. Nitrogen fertilization increased plant N concentration, plant N yield, grain protein concentration and grain protein yield when soil N reserves were intermediate to high and rainfall was adequate.Key words: Nitrogen uptake, wheat (winter), nitrogen response, tissue nitrogen, grain protein, environment


2009 ◽  
Vol 89 (4) ◽  
pp. 403-411 ◽  
Author(s):  
S S Malhi ◽  
Y K Soon ◽  
S Brandt

Growing season rainfall affects fertilizer N recovery, particularly in semi-arid environments. However, the influence of rainfall distribution during the growing season is not well-understood. We conducted a 7-yr study (from 1997 to 2006) to assess this effect, and that of no-till (NT) vs. conventional tillage (CT), on fertilizer N recovery by spring wheat (Triticum aestivum L.) fertilized with 15N-labelled urea at 40 kg N ha–1 and grown on stubble on a Dark Brown Chernozem soil in Saskatchewan, Canada. Two of the seven experimental years had growing season rainfall close to normal, one was above normal and four were below normal. Tillage treatment did not affect 15N recovery by wheat; however, 15N recovery in the top 15 cm of soil averaged 47% under NT vs. 39% under CT (P = 0.02). Total N and 15N uptakes were most affected by "year" due to variation in growing season rainfall distribution. Excluding an ultra-low value of 3.8% (or 1.5 kg N ha–1) in 2002, due to extreme drought, 15N recovery by wheat averaged 47.5% (range 30–57%), and percent N derived from fertilizer was 12–20%. Rainfall in May correlated significantly with 15N and total N uptake (r = 0.605 and 0.699, respectively). The recovery of 15N in wheat head correlated negatively with June rainfall (r = –0.624), probably because more moisture increased soil N mineralization, which diluted the 15N pool. During grain filling, soil N uptake was 12–30 kg ha–1, compared with negligible amounts (< 7%) of 15N; however, about 15 kg ha–1 of 15N were remobilized vs. 34–74 kg ha–1 of soil N. It is concluded that, in this semi-arid region, fertilizer N uptake is influenced more by rainfall in May than other months of the growth period.Key words: 15N-labelled urea, fertilizer N recovery, N uptake, rainfall, remobilized N, tillage


2022 ◽  
Vol 12 ◽  
Author(s):  
Yushi Zhang ◽  
Yubin Wang ◽  
Churong Liu ◽  
Delian Ye ◽  
Danyang Ren ◽  
...  

Increasing use of plant density or/and nitrogen (N) application has been introduced to maize production in the past few decades. However, excessive planting density or/and use of fertilizer may cause reduced N use efficiency (NUE) and increased lodging risks. Ethephon application improves maize lodging resistance and has been an essential measure in maize intensive production systems associated with high plant density and N input in China. Limited information is available about the effect of ethephon on maize N use and the response to plant density under different N rates in the field. A three-year field study was conducted with two ethephon applications (0 and 90 g ha−1), four N application rates (0, 75, 150, and 225 kg N ha−1), and two plant densities (6.75 plants m−2 and 7.5 plants m−2) to evaluate the effects of ethephon on maize NUE indices (N agronomic efficiency, NAE; N recovery efficiency, NRE; N uptake efficiency, NUpE; N utilization efficiency, NUtE; partial factor productivity of N, PFPN), biomass, N concentration, grain yield and N uptake, and translocation properties. The results suggest that the application of ethephon decreased the grain yield by 1.83–5.74% due to the decrease of grain numbers and grain weight during the three experimental seasons. Meanwhile, lower biomass, NO3- and NH4+ fluxes in xylem bleeding sap, and total N uptake were observed under ethephon treatments. These resulted in lower NAE and NUpE under the ethephon treatment at a corresponding N application rate and plant density. The ethephon treatment had no significant effects on the N concentration in grains, and it decreased the N concentration in stover at the harvesting stage, while increasing the plant N concentration at the silking stage. Consequently, post-silking N remobilization was significantly increased by 14.10–32.64% under the ethephon treatment during the experimental periods. Meanwhile, NUtE significantly increased by ethephon.


2000 ◽  
Vol 80 (4) ◽  
pp. 849-860 ◽  
Author(s):  
D. M. Dean ◽  
B. J. Zebarth ◽  
C. G. Kowalenko ◽  
J. W. Paul ◽  
K. Chipperfield

This study examined the effects of solid poultry layer manure addition on soil N processes and on dry matter and N accumulation in red raspberry (Rubus idaeus L.). In trials conducted in two years, approximately 50% of the 400 kg total N ha−1 applied as manure was recovered as soil inorganic N 1 mo after manure application when manure was incorporated within 4 h of application. Three trials were conducted in two commercial raspberry fields: one with no history of manure use and one other with a history of heavy annual applications of poultry manure. Treatments included 55 kg N ha−1 as NH4NO3, 100 or 200 kg total N ha−1 as manure, and a control that received no manure or fertilizer N. Soil inorganic N to 60 cm depth was measured throughout the growing season. Berry yield was estimated, and dry matter and N accumulation was determined in floricanes at first berry ripening and in primocanes at the end of the growing season. Few significant effects of N fertilization were measured for any crop yield, growth or N accumulation parameter. This was attributed to the large (>150 kg N ha−1) supply of N to the crop in the unamended soil, primarily from soil N mineralization. Dry matter accumulation in the fruiting clusters was strongly correlated to estimated berry yield, and may provide a simple means for assessing relative yield within experiments. Soil nitrate measured in August after berry harvest may serve as a "report card" to assess N management in the current growing season, to refine fertilizer N management for subsequent growing seasons, and as an index of the risk of nitrate leaching over the following fall and winter in south coastal British Columbia. Key words: Nitrogen mineralization, nitrate leaching, manure N availability, Rubus idaeus


2019 ◽  
Vol 99 (3) ◽  
pp. 345-355
Author(s):  
Richard E. Engel ◽  
Carlos M. Romero ◽  
Patrick Carr ◽  
Jessica A. Torrion

Fertilizer NO3-N may represent a benefit over NH4-N containing sources in semiarid regions where rainfall is often not sufficient to leach fertilizer-N out of crop rooting zones, denitrification concerns are not great, and when NH3 volatilization concerns exist. The objective of our study was to contrast plant-N derived from fertilizer-15N (15Ndff), fertilizer-15N recovery (F15NR), total N uptake, grain yield, and protein of wheat (Triticum aestivum L.) from spring-applied NaNO3 relative to urea and urea augmented with urease inhibitor N-(n-butyl)thiophosphoric triamide (NBPT). We established six fertilizer-N field trials widespread within the state of Montana between 2012 and 2017. The trials incorporated different experimental designs and 15N-labeled fertilizer-N sources, including NaNO3, NH4NO3, urea, and urea + NBPT. Overall, F15NR and 15Ndff in mature crop biomass were significantly greater for NaNO3 than urea or urea + NBPT (P < 0.05). Crop 15Ndff averaged 53.8%, 43.9%, and 44.7% across locations for NaNO3, urea, and urea + NBPT, respectively. Likewise, crop F15NR averaged 52.2%, 35.8%, and 38.6% for NaNO3, urea, and urea + NBPT, respectively. Soil 15N recovered in the surface layer (0–15 cm) was lower for NaNO3 compared with urea and urea + NBPT. Wheat grain yield and protein were generally not sensitive to improvements in 15Ndff, F15NR, or total N uptake. Our study hypothesis that NaNO3 would result in similar or better performance than urea or urea + NBPT was confirmed. Use of NO3-N fertilizer might be an alternative strategy to mitigate fertilizer-N induced soil acidity in semiarid regions of the northern Great Plains.


Sign in / Sign up

Export Citation Format

Share Document