Management systems for conservation fallow on the southern Canadian prairies

1995 ◽  
Vol 75 (1) ◽  
pp. 93-99 ◽  
Author(s):  
R. E. Blackshaw ◽  
C. W. Lindwall

Fallow continues to be a common agronomic practice on the southern Canadian prairies, but it has been associated with increased soil erosion and salinity and declining soil fertility. Field experiments were conducted at Lethbridge, Alberta, from 1987 to 1992 to determine the effects of various fallow treatments on weed control, conservation of surface crop residues, accumulation of soil water, and succeeding spring and winter wheat yields. Conventional cultivation during the fallow year with 168-cm sweeps controlled most spring-germinating weeds but did not adequately control overwintered flix-weed or downy brome. Repeated applications of glyphosate and 2,4-D effectively controlled most weeds. Paraquat did not control wild buckwheat or dandelion. Glyphosate alone often did not control wild buckwheat or Russian thistle. Treatments involving a combination of herbicides and tillage gave the best control of all weed species. Although not as effective in conserving surface crop residues as sole use of herbicides, many of the combined herbicide-tillage treatments maintained sufficient crop residue to keep the risk of soil erosion low. Soil water accumulation and succeeding wheat yields with the combined herbicide-tillage treatments were similar to, or greater than, those attained with repeated herbicides or repeated tillage. Management systems combining herbicides and tillage for fallow weed control may reduce costs and prevent or retard the development of herbicide resistance. Key words: Water conservation, herbicides, reduced tillage, soil erosion, stubble retention, weed control, wheat yield, no-till

1995 ◽  
Vol 75 (4) ◽  
pp. 559-565 ◽  
Author(s):  
R. E. Blackshaw ◽  
C. W. Lindwall

Fallow continues to be a common agronomic practice on the Canadian prairies but it has been associated with increased soil erosion. Risk of fallow erosion can be reduced by maintaining adequate levels of crop residue on the soil surface. Field experiments were conducted at Lethbridge, Alberta from 1991 to 1993 to determine if commonly grown prairie crops differ in their rates of crop residue degradation during fallow and to assess the effect of herbicides and wide-blade tillage on loss of crop residues. The ranking of crop residue losses during fallow was lentil > canola > rye > barley > wheat > flax. High N content in residues usually increased the rate of biomass loss. Flax straw, perhaps because of its high lignin content, did not follow this pattern and was the most persistent of all crop residues. Up to three applications of the herbicides, glyphosate, paraquat, and 2,4-D, at recommended rates did not alter field degradation of any of these crops. These herbicides maintained greater amounts of anchored and total surface crop residues than wide-blade tillage during both fallow seasons. Results are discussed in terms of crops grown before fallow, weed control during fallow, and maintenance of sufficient surface plant residues to reduce the risk of soil erosion. Key words: Glyphosate, paraquat, 2,4-D, reduced tillage, soil erosion, stubble retention


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 257 ◽  
Author(s):  
Husrev Mennan ◽  
Khawar Jabran ◽  
Bernard H. Zandstra ◽  
Firat Pala

Vegetables are a substantial part of our lives and possess great commercial and nutritional value. Weeds not only decrease vegetable yield but also reduce their quality. Non-chemical weed control is important both for the organic production of vegetables and achieving ecologically sustainable weed management. Estimates have shown that the yield of vegetables may be decreased by 45%–95% in the case of weed–vegetable competition. Non-chemical weed control in vegetables is desired for several reasons. For example, there are greater chances of contamination of vegetables by herbicide residue compared to cereals or pulse crops. Non-chemical weed control in vegetables is also needed due to environmental pollution, the evolution of herbicide resistance in weeds and a strong desire for organic vegetable cultivation. Although there are several ways to control weeds without the use of herbicides, cover crops are an attractive choice because these have a number of additional benefits (such as soil and water conservation) along with the provision of satisfactory and sustainable weed control. Several cover crops are available that may provide excellent weed control in vegetable production systems. Cover crops such as rye, vetch, or Brassicaceae plants can suppress weeds in rotations, including vegetables crops such as tomato, cabbage, or pumpkin. Growers should also consider the negative effects of using cover crops for weed control, such as the negative allelopathic effects of some cover crop residues on the main vegetable crop.


2013 ◽  
Vol 20 (3) ◽  
pp. 507-517
Author(s):  
Hao Chen

Abstract In semi-humid Loess Plateau of northern China, water is the limiting factor for rain-fed crop yields. In this region, long-term traditional ploughing with straw removal has resulted in poor soil structure, water conservation and crop yield. Controlled traffic, combined with no-till and straw cover has been proposed to improve soil water conservation and crop yield. From 1999 to 2007, a field experiment on winter wheat was conducted in the dryland area of Loess Plateau of northern China, to investigate the effects of traffic and tillage on soil water conservation and crop yield. The field experiment was conducted using two controlled traffic treatments, no tillage with residue cover and no compaction (NTCN), shallow tillage with residue cover and no compaction (STCN) and one conventional tillage treatment (CK). Results showed that controlled traffic system reduced soil compaction in the top soil layer, increased soil water infiltration. The benefit on soil water infiltration translated into more soil conservation (16.1%) in 0-100 cm soil layer in fellow period, and achieved higher soil water availability at planting (16.5%), with less yearly variation. Consequently, controlled traffic system increased wheat yield by 12.6% and improved water use efficiency by 5.2%, both with less yearly variation, compared with conventional tillage. Within controlled traffic treatments, no tillage treatment NTCN showed better overall performance. In conclusion, controlled traffic combined with no-tillage and straw cover has higher performance on conserving water, improving yield and water use efficiency. It is a valuable system for soil and water conservation for the sustainable development of agriculture in dryland China.


2001 ◽  
Vol 52 (2) ◽  
pp. 295 ◽  
Author(s):  
R. A. Latta ◽  
L. J. Blacklow ◽  
P. S. Cocks

Two field experiments in the Great Southern region of Western Australia compared the soil water content under lucerne (Medicago sativa) with subterranean clover (Trifolium subterranean) and annual medic (Medicago polymorpha) over a 2-year period. Lucerne depleted soil water (10–150 cm) between 40 and 100 mm at Borden and 20 and 60 mm at Pingrup compared with annual pasture. There was also less stored soil water after wheat (Triticum aestivum) and canola (Brassica napus) phases which followed the lucerne and annual pasture treatments, 30 and 48 mm after wheat, 49 and 29 mm after canola at Borden and Pingrup, respectively. Lucerne plant densities declined over 2 seasons from 35 to 25 plants/m2 (Borden) and from 56 to 42 plants/m2 (Pingrup), although it produced herbage quantities similar to or greater than clover/medic pastures. The lucerne pasture also had a reduced weed component. Wheat yield at Borden was higher after lucerne (4.7 t/ha) than after annual pasture (4.0 t/ha), whereas at Pingrup yields were similar (2 t/ha) but grain protein was higher (13.7% compared with 12.6%) . There was no yield response to applied nitrogen after lucerne or annual pasture at either site, but it increased grain protein at both sites. There was no pasture treatment effect on canola yield or oil content at Borden (2 t/ha, 46% oil). However, at Pingrup yield was higher (1.5 t/ha compared to 1.3 t/ha) and oil content was similar (41%) following lucerne–wheat. The results show that lucerne provides an opportunity to develop farming systems with greater water-use in the wheatbelt of Western Australia, and that at least 2 crops can be grown after 3 years of lucerne before soil water returns to the level found after annual pasture.


HortScience ◽  
2016 ◽  
Vol 51 (12) ◽  
pp. 1524-1528 ◽  
Author(s):  
Megan E. O’Rourke ◽  
Jessica Petersen

Conservation tillage has the potential to decrease the environmental footprint of pumpkin production, but possible trade-offs with yield are not well understood. This study experimentally tested the effects of three cultivation techniques (conventional-till, strip-till, and no-till) on pumpkin production, weed pressure, soil moisture, and soil erosion. Randomized complete block field experiments were conducted on Cucurbita pepo L. ‘Gladiator’ pumpkins in 2014 and 2015. Overall yields were higher in 2015, averaging 45.2 t·ha−1, compared with 37.4 t·ha−1 in 2014. In 2014, pumpkin yields were similar across tillage treatments. In 2015, the average fruit weight of no-till pumpkins was significantly greater than strip-till and conventional-till pumpkins, which corresponded to a marginally significant 13% and 22% yield increase, respectively (P = 0.11). Weed control was variable between years, especially in the strip-till treatment. Soil moisture was consistently highest in the no-till treatment in both years of study. Conventional-till pumpkin plots lost ≈9 times more soil than the two conservation tilled treatments during simulated storm events. The 2015 yield advantage of no-till pumpkins seems related to both high soil moisture retention and weed control. Research results suggest that no-till and strip-till pumpkin production systems yield at least as well as conventional-till systems with the advantage of reducing soil erosion during extreme rains.


1985 ◽  
Vol 12 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Daniel L. Colvin ◽  
Robert H. Walker ◽  
Michael G. Patterson ◽  
Glenn Wehtje ◽  
John A. McGuire

Abstract Field experiments were conducted from 1981 through 1983 on a Dothan sandy loam (Plinthic Paleudults) at Headland, Alabama, to investigate the effects of row patterns and weed management systems on weed control, peanut yield, and net returns to land and management. Treatments consisted of three row patterns, a) conventional 91-cm rows, b) dual twin 18-cm rows, and c) triple twin 18-cm rows, and six weed management systems ranging from none to various combinations of herbicide and mechanical inputs. The experimental area was naturally infested with bristly starbur (Acanthospermum hispidum DC), sicklepod (Cassia obtusifolia L.), Florida beggarweed [Desmodium tortuosum (Sw.) DC.], large crabgrass [Digitaria sanguinalis (L.) Scop.], and Texas panicum (Panicum texanum Buckl.). Results showed that weed control was affected somewhat by row patterns with broadleaf weeds being more responsive to row pattern manipulation than grass weeds. Weed fresh weights were generally lower as row patterns narrowed from conventional 91-cm spacing, however exceptions did occur. Highest yields and net returns were obtained when peanuts were planted in the dual twin 18-cm rows and weed management included benefin applied preplant incorporated, plus alachlor applied preemergence, and two timely cultivations.


1976 ◽  
Vol 16 (81) ◽  
pp. 564 ◽  
Author(s):  
AJ Pressland ◽  
GN Batianoff

Three field experiments to study the effect of time and method of cultivation during fallow on soil moisture accretion and crop growth were established at a site near Charleville, Queensland. The soil was a grey-brown cracking clay (46 per cent clay) typical of the Mitchell grass (Astrebla spp.) downs. In the first experiment, soil moisture accretion was followed on plots cultivated in November 1966 with either a disc plough or scarifier or not cultivated. Soil moisture was increased in the 90 cm deep profile by cultivation, but remained almost constant for the duration of the summer fallow. There was no difference in soil moisture under the disced and scarified plots. The remaining experiments were designed to study the effect of cultivations during fallow on soil moisture at the time of sowings. One early summer cultivation resulted in soil moisture levels similar to that gained from two or more ploughings. However, crop yields were highest following three cultivations. It is concluded that two or three cultivations during fallow decreases loss of soil water through transpiration of weeds and should increase the number of years a forage crop can be expected in south western Queensland.


2004 ◽  
Vol 55 (8) ◽  
pp. 839 ◽  
Author(s):  
A. W. Humphries ◽  
R. A. Latta ◽  
G. C. Auricht ◽  
W. D. Bellotti

Two field experiments in southern Australia investigated a farming system of over-cropping wheat (Triticum aestivum L.) into established lucerne (Medicago sativa subsp. L.) varieties of different winter activity ratings. The study was completed at Roseworthy, South Australia, and Katanning, Western Australia, between August 2000 and May 2003 in seasons receiving below average and average rainfall. Comparative lucerne persistence and biomass, wheat biomass, grain yield and protein contents, and soil water contents were measured. Wheat grain yield was reduced by 13–63% by over-cropping lucerne compared with wheat monoculture. Winter-dormant lucerne (winter activity Classes 0.5 and 2) reduced the yield penalty compared with winter-active varieties (Classes 6 and 10) in 2 of the 4 evaluations. The positive response to applying N at sowing in the second year of over-cropping wheat at Katanning was greatest in the most winter-dormant lucerne treatment (winter activity 0.5). Soil water contents were similar under the lucerne/wheat over-cropping and lucerne monoculture treatments irrespective of lucerne winter activity. Deficits of up to 43 mm at Roseworthy and 88 mm at Katanning were measured in the 0–200-cm soil profile at the start of the third summer of the study. The study shows that it can be more efficient in terms of land area to over-crop wheat into lucerne than to grow monocultures on separate parcels of land akin to phase farming. The improved productivity of over-cropping is associated with the separation of growth patterns of winter wheat and summer-active lucerne. This farming system offers great potential for improving sustainability and productivity in southern Australian cropping rotations.


1993 ◽  
Vol 7 (2) ◽  
pp. 425-430 ◽  
Author(s):  
Gregg A. Johnson ◽  
Michael S. Defelice ◽  
Zane R. Helsel

Field experiments were conducted in central Missouri in 1989 and 1990 to evaluate weed control practices in conjunction with cover crops and cover management systems in reduced tillage corn. There was no difference in weed control among soybean stubble, hairy vetch, and rye soil cover when averaged over cover management systems and herbicide treatments. However, mowed hairy vetch and rye covers provided greater weed control in the no-till plots than soybean stubble when no herbicide was used. Differences in weed control among cover management systems were reduced or eliminated when a PRE herbicide was applied. corn population and height were reduced by hairy vetch and rye soil cover. Corn grain yield was reduced in rye plots both years. There was no difference in grain yield between tilled and no-till plots.


1998 ◽  
Vol 12 (3) ◽  
pp. 484-490 ◽  
Author(s):  
S. Vizantinopoulos ◽  
N. Katranis

Field experiments were carried out from 1987 to 1990 to develop an integrated weed control management system for the control of blackgrass in winter wheat in Greece. The weed control treatments included both herbicides and cultural measures. The performance of preemergence (PRE) herbicides against blackgrass was better than postemergence (POST) herbicides; selectivity was dependent on application rate. Late timing of wheat sowing resulted in significant reduction of the blackgrass population competing with wheat. The critical period for blackgrass infestation occurred 4.0 to 5.5 wk after wheat emergence. Blackgrass density of 170 to 1,170 plants/m2caused wheat yield reduction equal to 10 and 30%, respectively. A quadratic relationship describing the percent reduction of wheat yield due to competition with different blackgrass densities was developed. The economic threshold level for blackgrass varied between 100 and 125 plants/m2. The results emphasize the importance of using a combination of chemical and cultural controls, including critical periods for herbicide application in maintaining an integrated approach for blackgrass control in wheat.


Sign in / Sign up

Export Citation Format

Share Document