Species, herbicide and tillage effects on surface crop residue cover during fallow

1995 ◽  
Vol 75 (4) ◽  
pp. 559-565 ◽  
Author(s):  
R. E. Blackshaw ◽  
C. W. Lindwall

Fallow continues to be a common agronomic practice on the Canadian prairies but it has been associated with increased soil erosion. Risk of fallow erosion can be reduced by maintaining adequate levels of crop residue on the soil surface. Field experiments were conducted at Lethbridge, Alberta from 1991 to 1993 to determine if commonly grown prairie crops differ in their rates of crop residue degradation during fallow and to assess the effect of herbicides and wide-blade tillage on loss of crop residues. The ranking of crop residue losses during fallow was lentil > canola > rye > barley > wheat > flax. High N content in residues usually increased the rate of biomass loss. Flax straw, perhaps because of its high lignin content, did not follow this pattern and was the most persistent of all crop residues. Up to three applications of the herbicides, glyphosate, paraquat, and 2,4-D, at recommended rates did not alter field degradation of any of these crops. These herbicides maintained greater amounts of anchored and total surface crop residues than wide-blade tillage during both fallow seasons. Results are discussed in terms of crops grown before fallow, weed control during fallow, and maintenance of sufficient surface plant residues to reduce the risk of soil erosion. Key words: Glyphosate, paraquat, 2,4-D, reduced tillage, soil erosion, stubble retention

Author(s):  
R. Prajapati ◽  
D. Chakrborty ◽  
S. Saha ◽  
V. K. Gupta ◽  
R. N. Sahoo

<p><strong>Abstract.</strong> Left-over crop residue on the surface is a measure of tillage intensity and soil management, and is an integral part of the conservation agriculture practice. Remote sensing can be successfully used to monitor the large area crop residue cover which is otherwise difficult through the conventional way, provided the spectrally similar crop residues and soil can be suitably differentiated. Hyperspectral reflectance (350&amp;ndash;2500&amp;thinsp;nm) of various quantities of crop residue cover over red soil was measured with varying moisture contents in the residue. A broad spectrum near 2100&amp;thinsp;mm was identified for dry residue, which was not recorded in soil spectra. This could possibly be linked to the cellulose-lignin content. The cellulose absorption index (CAI) was evaluated for crop residue cover with moderate to good correlations, with strong dependency on the residue water content. A few narrow bands were identified to characterize both the cellulose-lignin (i.e. the CAI) and the water content, and could be incorporated in on-board multispectral sensors for regional estimation of crop residue over the soil surface.</p>


1995 ◽  
Vol 75 (1) ◽  
pp. 93-99 ◽  
Author(s):  
R. E. Blackshaw ◽  
C. W. Lindwall

Fallow continues to be a common agronomic practice on the southern Canadian prairies, but it has been associated with increased soil erosion and salinity and declining soil fertility. Field experiments were conducted at Lethbridge, Alberta, from 1987 to 1992 to determine the effects of various fallow treatments on weed control, conservation of surface crop residues, accumulation of soil water, and succeeding spring and winter wheat yields. Conventional cultivation during the fallow year with 168-cm sweeps controlled most spring-germinating weeds but did not adequately control overwintered flix-weed or downy brome. Repeated applications of glyphosate and 2,4-D effectively controlled most weeds. Paraquat did not control wild buckwheat or dandelion. Glyphosate alone often did not control wild buckwheat or Russian thistle. Treatments involving a combination of herbicides and tillage gave the best control of all weed species. Although not as effective in conserving surface crop residues as sole use of herbicides, many of the combined herbicide-tillage treatments maintained sufficient crop residue to keep the risk of soil erosion low. Soil water accumulation and succeeding wheat yields with the combined herbicide-tillage treatments were similar to, or greater than, those attained with repeated herbicides or repeated tillage. Management systems combining herbicides and tillage for fallow weed control may reduce costs and prevent or retard the development of herbicide resistance. Key words: Water conservation, herbicides, reduced tillage, soil erosion, stubble retention, weed control, wheat yield, no-till


2013 ◽  
Vol 33 (4) ◽  
pp. 699-708 ◽  
Author(s):  
Mariana M. Corradi ◽  
Alan R. Panosso ◽  
Marcílio V. Martins Filho ◽  
Newton La Scala Junior

The proper management of agricultural crop residues could produce benefits in a warmer, more drought-prone world. Field experiments were conducted in sugarcane production areas in the Southern Brazil to assess the influence of crop residues on the soil surface in short-term CO2 emissions. The study was carried out over a period of 50 days after establishing 6 plots with and without crop residues applied to the soil surface. The effects of sugarcane residues on CO2 emissions were immediate; the emissions from residue-covered plots with equivalent densities of 3 (D50) and 6 (D100) t ha-1 (dry mass) were less than those from non-covered plots (D0). Additionally, the covered fields had lower soil temperatures and higher soil moisture for most of the studied days, especially during the periods of drought. Total emissions were as high as 553.62 ± 47.20 g CO2 m-2, and as low as 384.69 ± 31.69 g CO2 m-2 in non-covered (D0) and covered plot with an equivalent density of 3 t ha-1 (D50), respectively. Our results indicate a significant reduction in CO2 emissions, indicating conservation of soil carbon over the short-term period following the application of sugarcane residues to the soil surface.


2019 ◽  
Vol 40 (03) ◽  
Author(s):  
Maninder Singh ◽  
Anita Jaswal ◽  
Arshdeep Singh

Crop residue management (CRM) through conservation agriculture can improve soil productivity and crop production by preserving soil organic matter (SOM) levels. Two major benefits of surface-residue management are improved organic matter (OM) near the soil surface and boosted nutrient cycling and preservation. Larger microbial biomass and activity near the soil surface act as a pool for nutrients desirable in crop production and enhance structural stability for increased infiltration. In addition to the altered nutrient distribution within the soil profile, changes also occur in the chemical and physical properties of the soil. Improved soil C sequestration through enhanced CRM is a cost-effective option for reducing agriculture's impact on the environment. Ideally, CRM practices should be selected to optimize crop yields with negligible adverse effects on the environment. Crop residues of common agricultural crops are chief resources, not only as sources of nutrients for subsequent crops but also for amended soil, water and air quality. Maintaining and managing crop residues in agriculture can be economically beneficial to many producers and more importantly to society. Improved residue management and reduced tillage practices should be encouraged because of their beneficial role in reducing soil degradation and increasing soil productivity. Thus, farmers have a responsibility in making management decisions that will enable them to optimize crop yields and minimize environmental impacts. Multi-disciplinary and integrated efforts by a wide variety of scientists are required to design the best site-specific systems for CRM practices to enhance agricultural productivity and sustainability while minimizing environmental impacts.


Solid Earth ◽  
2014 ◽  
Vol 5 (1) ◽  
pp. 499-507 ◽  
Author(s):  
S. L. Weyers ◽  
K. A. Spokas

Abstract. Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different plant-based feedstocks and pyrolysis platforms in the fall of 2008. Litterbags containing wheat straw material were buried in July of 2011 below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a uncharred wood-pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Overall, these findings indicate that no significant alteration in the microbial dynamics of the soil decomposer communities occurred as a consequence of the application of plant-based biochars evaluated here.


Weed Science ◽  
1998 ◽  
Vol 46 (1) ◽  
pp. 127-131 ◽  
Author(s):  
Robert E. Blackshaw ◽  
Louis J. Molnar ◽  
Duane F. Chevalier ◽  
C. Wayne Lindwall

Field experiments were conducted for 3 yr to determine the effect of various biological and physical factors on the operation of the weed-sensing Detectspray system. Plant detection is achieved by sensors measuring differential reflectance of red and near-infrared wavelengths of light from green plants, crop residues, and soil. Weed detection was greatly reduced 70 to 80 min after sunrise and before sunset when operated at lat 50°N because of reduced solar irradiance. Tall, dense-standing crop stubble limited detection of small weeds at the soil surface. Weed detection varied with plant species. Canola with three to four leaves consistently was detected, but wheat or green foxtail usually required five to six leaves to be detected. Small weeds were detected if present at densities greater than 70 plants m−2. Growers and commercial applicators need to be aware of the limitations of the Detectspray system to use it effectively to control weeds with concurrent reductions in herbicide use.


2015 ◽  
Vol 29 (2) ◽  
pp. 177-184 ◽  
Author(s):  
Lynn M. Sosnoskie ◽  
A. Stanley Culpepper ◽  
L. Bo Braxton ◽  
John S. Richburg

Cotton genetically engineered to be resistant to topical applications of 2,4-D could provide growers with an additional tool for managing difficult-to-control broadleaf species. However, the successful adoption of this technology will be dependent on the ability of growers to manage off-target herbicide movement. Field experiments were conducted in Moultrie, GA, to evaluate cotton injury resulting from the volatilization of 2,4-D when formulated as an ester, an amine, or a choline salt. Each formulation of 2,4-D (2.24 kg ha−1) was applied in mixture with glyphosate (2.24 kg ha−1) directly to the soil surface (10 to 20% crop residue) in individual square blocks (750 m2). Following herbicide applications, replicate sets of four potted cotton plants (five- to seven-leaf stage) were placed at distances ranging from 1.5 to 48 m from the edge of each treatment. Plants were allowed to remain in-field for up to 48 h before being removed. Cotton exposed to 2,4-D ester for 48 h exhibited maximum injury ratings of 63, 57, 48, 29, 13, and 2% at distances of 1.5, 3, 6, 12, 24, and 48 m, respectively. Less than 5% injury was noted for the amine and choline formulations at any distance. Plant height was also affected by formulation and distance; plants that were located closest to the ester-treated block were smaller than their more distantly-positioned counterparts. Exposure to the amine and choline formulations did not affect plant heights. Additionally, two plastic tunnels were placed inside of each treated block to concentrate volatiles and maximize the potential for crop injury. Injury ratings of 76, 13, and 5% were noted for cotton exposed to the ester, amine, and choline formulations, respectively when under tunnels for 48 h. Results indicate that the choline formulation of 2,4-D was less volatile and injurious to cotton than the ester under the field conditions in this study.


Author(s):  
May Zar Myint ◽  
Raihana Habib Kanth ◽  
F. A. Bahar ◽  
S. S. Mehdi ◽  
A. A. Saad ◽  
...  

Soil is the fundamental and necessary natural resource for the agricultural production system. Due to the increasing global population and the impact of climate changes, natural resources are the major limiting factor to use widely for food production. The major factors responsible for the deterioration of natural resources are extreme events caused by man-made activities and unexpected and unpredictable adverse natural forces of nature. Among the different degradation processes, soil erosion is one of the serious threatens to the deterioration of soil for the agricultural sector and healthy ecosystem conservation. Intensive agricultural practices are particularly caused by the acceleration of the soil erosion process. Therefore, the good and systematic management of soil resources is indispensable not only for sustainable agriculture or conservation agriculture but also for the protection and reduction of the natural ecosystem. Covering crop residues on soil enhances organic matter, protects the soil surfaces, maintains water and nutrients, improves soil biological activity and chemical composition, and contributes to pest management. Therefore, crop residue management is one of the conservation practices and is designed to leave sufficient residue on the soil surface to reduce wind and water erosion. It includes all field operations that affect the amount of residue, its an orientation to the soil surface and prevailing wind and rainfall patterns and the residue distribution throughout the period requiring protection. This paper especially highlights the status of soil erosion, crop residues, and management in crop residues in sustainable agriculture.


2014 ◽  
Vol 6 (1) ◽  
pp. 599-617 ◽  
Author(s):  
S. L. Weyers ◽  
K. A. Spokas

Abstract. Impacts of biochar application at laboratory scales are routinely studied, but impacts of biochar application on decomposition of crop residues at field scales have not been widely addressed. The priming or hindrance of crop residue decomposition could have a cascading impact on soil processes, particularly those influencing nutrient availability. Our objectives were to evaluate biochar effects on field decomposition of crop residue, using plots that were amended with biochars made from different feedstocks and pyrolysis platforms prior to the start of this study. Litterbags containing wheat straw material were buried below the soil surface in a continuous-corn cropped field in plots that had received one of seven different biochar amendments or a non-charred wood pellet amendment 2.5 yr prior to start of this study. Litterbags were collected over the course of 14 weeks. Microbial biomass was assessed in treatment plots the previous fall. Though first-order decomposition rate constants were positively correlated to microbial biomass, neither parameter was statistically affected by biochar or wood-pellet treatments. The findings indicated only a residual of potentially positive and negative initial impacts of biochars on residue decomposition, which fit in line with established feedstock and pyrolysis influences. Though no significant impacts were observed with field-weathered biochars, effective soil management may yet have to account for repeat applications of biochar.


Author(s):  
Félicien Majoro ◽  
Umaru Garba Wali ◽  
Omar Munyaneza ◽  
François-Xavier Naramabuye ◽  
Concilie Mukamwambali

The history of soil erosion is an integral part of the agriculture. All over the world, wherever human being started the agricultural operations, there exists the problem of soil erosion in some extent. Soil erosion leads to the reduction of water infiltration rate and enhances runoff and soil degradation. This study focuses on Sebeya catchment located in the Western part of Rwanda. The main objective of this study was to assess various preventive measures against soil surface crusting and development of runoff coefficients in order to minimize the soil loss in Sebeya catchment agricultural fields. The proposed methodology was much concerned with the efficiency analysis of soil conservation practice of mulching in maize cover crops. The names of the three experimental field plots sited are Maize-Fertilizer-Mulching (MFM), Maize-Fertilizer (MF) and Bare Soil (BS) which were set in Rugerero Sector of Rubavu District. Each of these 3 plots was constructed with its runoff collecting tank and they were under similar conditions except land cover. Samples of soil from field plots and water from runoff collecting tanks were tested for soil classification and soil loss estimation from each plot respectively. The analysis of results showed that soil of the experimental plots is a gravelly sand with (sand:56.27%; clay and silt: 3.24% and gravel: 40.49%). Also, the results showed that the plot coded as MFM, has high moisture content with low runoff and soil loss compared to 2 other plots. This research revealed that soil conservation practices such as surface mulching and vegetative cover reduce runoff, soil loss and are well recommended for preventing and controlling soil surface crusting. Keywords: Soil erosion, mulching, soil crusting, field experiments, Rwanda


Sign in / Sign up

Export Citation Format

Share Document