Effects of nitrogen fertilization on fruit yield and quality of processing tomatoes

2004 ◽  
Vol 84 (3) ◽  
pp. 865-871 ◽  
Author(s):  
J. Warner ◽  
T. Q. Zhang ◽  
X. Hao

Four processing tomato (Lycopersicon esculentum Mill.) cultivars (CC337, H9230, H9492 and H9553) were field-grown in southwestern Ontario using five N fertilization rates in each of 4 yr (0, 50, 100, 150 and 200 kg N ha-1 in 1999 and 0, 100, 150, 200 and 250 kg N ha-1 in 2000, 2001 and 2002). Total fruit yield increased linearly as N rate was increased except in 2001, which was a dry year. Responses of marketable yield to fertilizer N rate were dependent on cultivar and the year. In years when sufficient soil water was available, N fertilizer rates of 200 kg ha-1 or higher were required to produce the maximum marketable yield for the four cultivars. In the dryer years, the response to fertilizer N rate was cultivar dependent, and the application of 150 to 200 kg N ha-1 was sufficient to maximize marketable yield. Fertilizer N above the rate required for maximum marketable yield increased green fruit yield at harvest. Nitrogen rate did not affect the soluble solids (SS) content, firmness, size or colour of marketable fruit. Differences in yield and fruit quality were noted among cultivars. H9553 was the highest-yielding cultivar. H9230 had the largest fruit size. CC337 generally had the best red fruit colour and the lowest percent SS. H9492 generally had the highest percent SS. To attain maximum marketable yields, it appears that N rates should be adjusted based on cultivars, anticipated rainfall levels and availability of irrigation. Key words: Lycopersicon esculentum, processing tomato, nitrogen fertilization, yield, quality

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 575 ◽  
Author(s):  
Domenico Ronga ◽  
Alfonso Pentangelo ◽  
Mario Parisi

Processing tomato is the second most important worldwide cash crop, generally produced in high-input systems. However, fruit yield and quality are affected by agronomic management, particularly nitrogen (N) fertilization, whose application to indeterminate growth genotypes for canning has yet to be investigated in depth. Hence, the objective of this work was to assess the effects of different N rates (0, 50, 125, 200, 275, and 350 kg ha−1) on fruit yield and quality characteristics of processing tomato ‘San Marzano’ landrace. The results of our study showed that 125 and 200 kg of N ha−1 are the most appropriate rates in soil with high fertility, ensuring the highest values of marketable yield and brix yield. However, plants fertilized with 125 kg of N ha−1 attained higher values of N efficiency and fruit K and P concentrations than plants fertilized with 200 kg of N ha−1. Our results suggest that overdoses of N supplies negatively affected fruit yield and quality of San Marzano landrace grown in high soil fertility conditions, also reducing the agricultural sustainability. Hence, specific agronomic protocol and extension services are required to optimally manage tomato crop systems.


1993 ◽  
Vol 73 (1) ◽  
pp. 273-279 ◽  
Author(s):  
V. Poysa

Advanced lines and backcrosses from interspecific hybridization of processing tomato (Lycopersicon esculentum Mill.) with six L. chmielewskii (Rick, Kesicki, Fobes and Holle) and L. cheesmanii (Riley) accessions were evaluated in the field over 2 yr for soluble solids content (SSC), total solids content (TSC), fruit yield and fruit size to determine the effectiveness of combining elevated solids levels with high fruit yield and size following early generation selection. More than a quarter of the lines had significantly higher SSC levels than the recurrent tomato parent, Purdue 812 (P812). Several lines combined high SSC and TSC with high fruit yield and large fruit size to produce more dry matter yield per hectare or per fruit than P812. Two backcrosses were optimal for combining high SSC and high yield. SSC and TSC were negatively correlated with fruit size and, to a lesser degree, with fruit yield. Key words: Lycopersicon esculentum, soluble solids, total solids


2010 ◽  
Vol 20 (3) ◽  
pp. 579-584
Author(s):  
Bielinski M. Santos ◽  
John W. Scott ◽  
Maricruz Ramírez-Sánchez

‘Tasti-Lee’™ (‘Fla. 8153’) is the first tomato (Solanum lycopersicum) released in Florida exclusively for the premium specialty market, with characteristic superior flavor and elevated lycopene concentration. Research was conducted to determine the appropriate nitrogen (N) fertilization and in-row distances for ‘Tasti-Lee’ tomato and thus improving the opportunities for successful adoption for this cultivar. Three N fertilization programs and two in-row distances were tested. Total N rates (204, 239, and 274 lb/acre) were the result of the combination of 50 lb/acre of N during prebedding plus each of the following drip-applied N fertilization programs: 1) 1.5 and 2.0 lb/acre per day from 1 to 4 weeks after transplanting (WAT) and 5 to 12 WAT, respectively; 2) 1.5, 2.0, and 2.5 lb/acre per day during 1 to 2 WAT, 3 to 4 WAT, and 5 to 12 WAT; and 3) 1.5, 2.5, and 3.0 lb/acre per day during 1 to 2 WAT, 3 to 4 WAT, and 5 to 12 WAT, respectively. In-row distances were 18 or 24 inches between plants, providing 5808 and 4356 plants/acre. Early and total marketable yields of ‘Tasti-Lee’ tomato were influenced by in-row distances and N fertilization programs, but not by their interaction. The highest early marketable fruit yield was found in plots treated with the highest N rate among fertilization programs (+6%), and in plots planted 18 inches apart (+7%) in comparison with the lowest N rate and the 24-inch spacing. Tomato plots treated with the highest N rate (274 lb/acre) resulted in the largest total marketable yield (+8%). Among the in-row distances, when plants were transplanted 18 inches apart, tomato total marketable yield increased by 18% compared with 24 inches between plants.


Horticulturae ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 34
Author(s):  
Christopher Menzel

Five strawberry (Fragaria × ananassa Duch.) cultivars were grown in Queensland, Australia to determine whether higher temperatures affect production. Transplants were planted on 29 April and data collected on growth, marketable yield, fruit weight and the incidence of small fruit less than 12 g until 28 October. Additional data were collected on fruit soluble solids content (SSC) and titratable acidity (TA) from 16 September to 28 October. Minimum temperatures were 2 °C to 4 °C higher than the long-term averages from 1965 to 1990. Changes in marketable yield followed a dose-logistic pattern (p < 0.001, R2s = 0.99). There was a strong negative relationship between fruit weight (marketable) and the average daily mean temperature in the four or seven weeks before harvest from 29 July to 28 October (p < 0.001, R2s = 0.90). There were no significant relationships between SSC and TA, and temperatures in the eight days before harvest from 16 September to 28 October (p > 0.05). The plants continued to produce a marketable crop towards the end of the season, but the fruit were small and more expensive to harvest. Higher temperatures in the future are likely to affect the economics of strawberry production in subtropical locations.


2016 ◽  
Vol 10 (1s) ◽  
pp. 39 ◽  
Author(s):  
Grazia Disciglio ◽  
Francesco Lops ◽  
Antonia Carlucci ◽  
Giuseppe Gatta ◽  
Annalisa Tarantino ◽  
...  

The root-parasitic weed <em>Phelipanche ramosa</em> (L.) Pomel represents a major problem for processing tomato crops. The control of this holoparasitic plant is difficult, and better understanding of treatment methods is needed to develop new and specific control strategies. This study investigated 12 agronomic, chemical, biological and biotechnological strategies for the control of this parasitic weed, in comparison with the untreated situation. The trial was carried out in 2014 at the Department of Agriculture, Food and the Environment of the University of Foggia (southern Italy), using processing tomato plants grown in pots filled with soil from a field that was heavily infested with <em>P. ramosa</em>. After transplantation, top dressing was performed with 70 kg ha<sup>–1</sup> nitrogen. A randomised block design with 3 replicates (pots) was adopted. During the growing cycle of the tomato, at 70, 75, 81 and 88 days after transplantation, the number of parasitic shoots (branched plants) that had emerged in each pot was determined, and the leaf chlorophyll of the plants was measured using a soil-plantanalysis- development meter. At harvesting on 8 August 2014, the major quanti-qualitative yield parameters were determined, including marketable yield, mean weight, dry matter, soluble solids, and fruit colour. The results show lower chlorophyll levels in the parasitised tomato plants, compared to healthy plants. None of the treatments provided complete control against P. ramosa. However, among the methods tested, Radicon® biostimulant (Radicon, Inc., Elk Grove Village, IL, USA), compost activated with <em>Fusarium oxysporum</em>, nitrogen and sulphur mineral fertilisers, Enzone<sup>TM</sup> soil fumigant (Elliott Chemicals Ltd., Auckland, New Zealand), and a resistant tomato genotype mitigated the virulence of the attacks of this parasite. These effects should be improved by combining some of these treatments, especially for gradual and continued reduction in the <em>seed bank</em> of the parasite in the soil. For the tomato yields across the different treatments, there were no significant differences seen; however, the yields showed an improving trend for treatments with lower presence of the <em>P. ramosa</em> weed.


2017 ◽  
Vol 47 (3) ◽  
Author(s):  
Gustavo Brunetto ◽  
◽  
Cesar Cella ◽  
Alcione Miotto ◽  
Eduardo Girotto ◽  
...  

ABSTRACT: Little is known about the impact of N fertilization on fruit production and composition in orange groves grown in soils with low or medium organic matter content in Rio Grande do Sul (RS). This study aimed to evaluate how N fertilization of orange trees cv. 'Lane Late' in a sandy soil may interfere in fruit yield and composition of fruit and juice. The experiment was conducted with orange trees cv. 'Lane Late' growing in Sandy Typic Hapludalf soil, in Rosário do Sul (RS). The plants received applications of 0, 20, 40, 60, 80, 100, 120, 140 and 160kg N ha-1. Total N in leaves, number of fruits per plant, yield, fresh weight, fruit diameter, peel thickness, percentage of fruit juice, peel color, juice color, ascorbic acid content, total soluble solids (TSS) and total titratable acidity were evaluated in 2010/2011 and 2011/2012 crops. In the first crop, especially yield, number of fruits per plant, TSS content in fruit juice and ratio decreased with increasing N rate applied. However, in the second crop, the total titratable acidity of the fruit juice prominently increased with the dose of N applied. In both crops, results were highly influenced by rainfall distribution, which affect the plant physiology, soil N dynamics and, consequently, probability of response to N applied and the loss of mineral N in the soil.


1991 ◽  
Vol 71 (3) ◽  
pp. 947-949 ◽  
Author(s):  
Athanasios P. Papadopoulos ◽  
Chin S. Tan

Three spring and two fall crops of greenhouse tomato (Lycopersicon esculentum L. Mill; various cultivars) grown in "Harrow" peat bags were irrigated 1, 4, 8 or 16 times daily. All plants received the same volume of fertilizer solution which varied with time from 0.2 to 1.0 L plant−1 d−1 according to crop and environmental conditions. The results showed little or no effect of irrigation frequency on early or total yield, number of grade no. 1 fruit, or fruit size. Key words: Lycopersicon esculentum, marketable yield


HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 622f-622
Author(s):  
Russell Johnston ◽  
Vernon Shattuck ◽  
John Seliga

The influence of various crop rotations on the marketable yield of processing tomatoes (Lvcopersicon esculentum) in southwestern Ontario was investigated. The study was conducted for three years using nine and eight crop rotations at Leamington and Dresden, respectively. Four rates of nitrogen, 0, 45, 90, and 135 kg/ha were applied to each rotation. The treatments were arranged in a split-plot experimental design. Tomato yields were generally higher at both locations for all rotations compared to continuously grown tomatoes (control). The highest yields were obtained when tomatoes were grown in an alfalfa (Medicago sativa) rotation and rotations involving rye (Secale cereale) or winter wheat (Triticum aestivum). Tomato yields from the soybean (Glycine max) rotation and from continuously grown tomatoes were similar. At both locations, yields from continuously grown tomatoes increased with increasing rates of nitrogen fertilizer. Optimal yields for each rotation varied with each individual rate of nitrogen. Tomatoes grown in the alfalfa rotation showed the least response to higher rates of applied nitrogen. Our data indicates that certain crop rotations and nitrogen fertilization rates can be used together to enhance the yield of processing tomatoes.


2013 ◽  
Vol 23 (6) ◽  
pp. 905-912 ◽  
Author(s):  
Wenjing Guan ◽  
Xin Zhao ◽  
Danielle D. Treadwell ◽  
Michael R. Alligood ◽  
Donald J. Huber ◽  
...  

Interest in producing specialty melons (Cucumis melo) is increasing in Florida, but information on yield performance, fruit quality, and disease resistance of specialty melon cultivars grown in Florida conditions is limited. In this study conducted at Citra, FL, during the 2011 Spring season, 10 specialty melon cultivars were evaluated, in both certified organic and conventionally managed fields, including: Creme de la Creme and San Juan ananas melon (C. melo var. reticulatus), Brilliant and Camposol canary melon (C. melo var. inodorus), Ginkaku and Sun Jewel asian melon (C. melo var. makuwa), Arava and Diplomat galia melon (C. melo var. reticulatus), and Honey Pearl and Honey Yellow honeydew melon (C. melo var. inodorus). ‘Athena’ cantaloupe (C. melo var. reticulatus) was included as a control. ‘Sun Jewel’, ‘Diplomat’, ‘Honey Yellow’, and ‘Honey Pearl’ were early maturing cultivars that were harvested 10 days earlier than ‘Athena’. ‘Athena’ had the highest marketable yield in the conventional field (10.7 kg/plant), but the yield of ‘Camposol’, ‘Ginkaku’, ‘Honey Yellow’, and ‘Honey Pearl’ did not differ significantly from ‘Athena’. Under organic production, ‘Camposol’ showed a significantly higher marketable yield (8.3 kg/plant) than ‘Athena’ (6.8 kg/plant). ‘Ginkaku’ produced the largest fruit number per plant in both organic (10 fruit/plant) and conventional fields (12 fruit/plant) with smaller fruit size compared with other melon cultivars. Overall, the specialty melon cultivars, except for asian melon, did not differ significantly from ‘Athena’ in terms of marketable fruit number per plant. ‘Sun Jewel’, ‘Diplomat’, and ‘San Juan’ showed relatively high percentages of cull fruit. ‘Honey Yellow’, ‘Honey Pearl’, and ‘Sun Jewel’ exhibited higher soluble solids concentration (SSC) than ‘Athena’ in both organic and conventional fields, while ‘Brilliant’, ‘San Juan’, and ‘Ginkaku’ also had higher SSC than ‘Athena’ under organic production. ‘Honey Yellow’, ‘Sun Jewel’, ‘Brilliant’, and ‘Camposol’ were less affected by powdery mildew (caused by Podosphaera xanthii) and downy mildew (caused by Pseudoperonospora cubensis) in the conventional field. ‘Honey Yellow’ and ‘Camposol’ also had significantly lower aboveground disease severity ratings in the organic field compared with ‘Athena’, although the root-knot nematode (RKN) (Meloidogyne sp.) gall rating was higher in ‘Honey Yellow’ than ‘Athena’.


HortScience ◽  
2005 ◽  
Vol 40 (6) ◽  
pp. 1862-1867 ◽  
Author(s):  
T.K. Hartz ◽  
P.R. Johnstone ◽  
D.M. Francis ◽  
E.M. Miyao

The effect of K fertigation through subsurface irrigation lines on processing tomato (Lycopersicon esculentum Mill.) fruit yield and quality was evaluated in four field trials in California from 2002–04. Fields had exchangeable soil K between 0.48 to 0.85 cmol·kg–1, with high exchangeable Mg (10.6 to 13.7 cmol·kg–1) and a history of yellow shoulder (YS, a fruit color disorder) occurrence. K treatments evaluated included seasonal amount applied (0 to 800 kg·ha–1), fertigation method (continuous versus weekly), and timing (early, mid or late season); foliar K treatments were also included in the 2002 trial. In two fields total and marketable fruit yield were significantly increased by K fertigation, and fruit color improvements were observed in all trials. Among color parameters improved by K fertigation were YS incidence, blended color, and L*, chroma, and hue of the shoulder region of fruit. K fertigation did not affect fruit soluble solids concentration. Yield increased only with fertigation treatments initiated during early fruit set. The effects of fertigation method and rate were inconsistent. Foliar K application was ineffective in increasing either fruit yield or quality.


Sign in / Sign up

Export Citation Format

Share Document