scholarly journals Cell Cycle Regulatory Protein Expression Profiles by Adenovirus p53 Infection in Human Papilloma Virus-associated Cervical Cancer Cells

2006 ◽  
Vol 38 (3) ◽  
pp. 168 ◽  
Author(s):  
Yong-Seok Lee ◽  
Su-Mi Bae ◽  
Sun-Young Kwak ◽  
Dong-Chun Park ◽  
Yong-Wook Kim ◽  
...  
Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 239 ◽  
Author(s):  
Sabina Ranjit ◽  
Sunitha Kodidela ◽  
Namita Sinha ◽  
Subhash Chauhan ◽  
Santosh Kumar

In the current study, we hypothesized that extracellular vesicles (EVs) secreted from human papilloma virus (HPV)-infected cervical cancer cells exacerbate human immunodeficiency virus (HIV)-1 replication in differentiated U1 cell line through an oxidative stress pathway. To test the hypothesis, we treated an HIV-1-infected macrophage cell line (U1) with HPV-infected Caski cell culture supernatant (CCS). We observed a significant increase in HIV-1 replication, which was associated with an increase in the expression of cytochrome P450 (CYPs 1A1 and 2A6) in the CCS-treated U1 cells. Furthermore, we isolated EVs from CCS (CCS-EVs), which showed the presence of CYPs (1A1, 2A6), superoxide dismutase 1 (SOD1), and HPV oncoproteins HPV16 E6. CCS-EVs when exposed to the U1 cells also significantly increased HIV-1 replication. Treatment of antioxidant, CYP1A1 and CYP2A6 inhibitors, and chemodietary agents with antioxidant properties significantly reduced the CCS and CCS-EVs mediated HIV-1 replication in U1 cells. Altogether, we demonstrate that cervical cancer cells exacerbate HIV-1 replication in differentiated U1 cell line via transferring CYPs and HPV oncoproteins through EVs. We also show that the viral replication occurs via CYP and oxidative stress pathways, and the viral replication is also reduced by chemodietary agents. This study provides important information regarding biological interactions between HPV and HIV-1 via EVs leading to enhanced HIV-1 replication.


2011 ◽  
Vol 392 (5) ◽  
Author(s):  
Michelle F. Maritz ◽  
Pauline J. van der Watt ◽  
Nina Holderness ◽  
Michael J. Birrer ◽  
Virna D. Leaner

AbstractAP-1, a transcription factor comprised primarily of Jun and Fos family proteins, regulates genes involved in proliferation, differentiation and oncogenesis. Previous studies demonstrated that elevated expression of Jun and Fos family member proteins is associated with numerous human cancers and in cancer-relevant biological processes. In this study we used a dominant-negative mutant of c-Jun, Tam67, which interferes with the functional activity of all AP-1 complexes, to investigate the requirement of AP-1 in the proliferation and cell cycle progression of cervical cancer cells. Transient and stable expression of Tam67 in CaSki cervical cancer cells resulted in decreased AP-1 activity that correlated with a significant inhibition of cell proliferation and anchorage-independent colony formation. Inhibiting AP-1 activity resulted in a two-fold increase in cells located in the G2/M phase of the cell cycle and an accompanying increase in the expression of the cell cycle regulatory protein, p21. The increase in p21 was associated with a decrease in HPV E6 expression and an increase in p53. Importantly, blocking the induction of p21 in CaSki-Tam67-expressing cells accelerated their proliferation rate to that of CaSki, implicating p21 as a key player in the growth arrest induced by Tam67. Our results suggest a role for AP-1 in the proliferation, G2/M progression and inhibition of p21 expression in cervical cancer.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huilin Zhang ◽  
Ping He ◽  
Qing Zhou ◽  
Yan Lu ◽  
Bingjian Lu

Abstract Background CSN5, a member of Cop9 signalosome, is essential for protein neddylation. It has been supposed to serve as an oncogene in some cancers. However, the role of CSN5 has not been investigated in cervical cancer yet. Methods Data from TCGA cohorts and GEO dataset was analyzed to examine the expression profile of CSN5 and clinical relevance in cervical cancers. The role of CSN5 on cervical cancer cell proliferation was investigated in cervical cancer cell lines, Siha and Hela, through CSN5 knockdown via CRISPR–CAS9. Western blot was used to detect the effect of CSN5 knockdown and overexpression. The biological behaviors were analyzed by CCK8, clone formation assay, 3-D spheroid generation assay and cell cycle assay. Besides, the role CSN5 knockdown in vivo was evaluated by xenograft tumor model. MLN4924 was given in Siha and Hela with CSN5 overexpression. Results We found that downregulation of CSN5 in Siha and Hela cells inhibited cell proliferation in vitro and in vivo, and the inhibitory effects were largely rescued by CSN5 overexpression. Moreover, deletion of CSN5 caused cell cycle arrest rather than inducing apoptosis. Importantly, CSN5 overexpression confers resistance to the anti-cancer effects of MLN4924 (pevonedistat) in cervical cancer cells. Conclusions Our findings demonstrated that CSN5 functions as an oncogene in cervical cancers and may serve as a potential indicator for predicting the effects of MLN4924 treatment in the future.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jinhong Qi ◽  
Li Zhou ◽  
Dongqing Li ◽  
Jingyuan Yang ◽  
He Wang ◽  
...  

Abstract Background Cell division cycle 25A (CDC25A) is a well-recognized regulator of cell cycle progression and is involved in cancer development. This work focused on the function of CDC25A in cervical cancer cell growth and the molecules involved. Methods A GEO dataset GSE63514 comprising data of cervical squamous cell carcinoma (CSCC) tissues was used to screen the aberrantly expressed genes in cervical cancer. The CDC25A expression in cancer and normal tissues was predicted in the GEPIA database and that in CSCC and normal cells was determined by RT-qPCR and western blot assays. Downregulation of CDC25A was introduced in CSCC cells to explore its function in cell growth and the cell cycle progression. The potential regulators of CDC25A activity and the possible involved signaling were explored. Results CDC25A was predicted to be overexpressed in CSCC, and high expression of CDC25A was observed in CSCC cells. Downregulation of CDC25A in ME180 and C33A cells reduced cell proliferation and blocked cell cycle progression, and it increased cell apoptosis. ALX3 was a positive regulator of CDC25A through transcription promotion. It recruited a histone demethylase, lysine demethylase 2B (KDM2B), to the CDC25A promoter, which enhanced CDC25A expression through demethylation of H3k4me3. Overexpression of ALX3 in cells blocked the inhibitory effects of CDC25A silencing. CDC25A was found as a positive regulator of the PI3K/Akt signaling pathway. Conclusion This study suggested that the ALX3 increased CDC25A expression through KDM2B-mediated demethylation of H3K4me3, which induced proliferation and cell cycle progression of cervical cancer cells.


Sign in / Sign up

Export Citation Format

Share Document