scholarly journals Acute Seizure Activity Promotes Lipid Peroxidation, Increased Nitrite Levels and Adaptive Pathways Against Oxidative Stress in the Frontal Cortex and Striatum

2009 ◽  
Vol 2 (3) ◽  
pp. 130-137 ◽  
Author(s):  
Hélio Vitoriano Nobre Júnior ◽  
Marta Maria de França Fonteles ◽  
Rivelilson Mendes de Freitas

Previous experiments have shown that the generation of free radicals in rat brain homogenates is increased following pilocarpine-induced seizures and status epilepticus (SE). This study was aimed at investigating the changes in neurochemical mechanisms such as lipid peroxidation levels, nitrite content, glutathione reduced (GSH) concentration, superoxide dismutase and catalase activities in the frontal cortex and the striatum of Wistar adult rats after seizures and SE induced by pilocarpine. The control group was treated with 0.9% saline and another group of rats received pilocarpine (400 mg/kg, i.p.). Both groups were sacrificed 24 h after the treatments. Lipid peroxidation level, nitrite content, GSH concentration and enzymatic activities were measured by using spectrophotometric methods. Our findings showed that pilocarpine administration and its resulting seizures and SE produced a significant increase of lipid peroxidation level in the striatum (47%) and frontal cortex (59%). Nitrite contents increased 49% and 73% in striatum and frontal cortex in pilocarpine group, respectively. In GSH concentrations were decreases of 54% and 58% in the striatum and frontal cortex in pilocarpine group, respectively. The catalase activity increased 39% and 49% in the striatum and frontal cortex, respectively. The superoxide dismutase activity was not altered in the striatum, but it was present at a 24% increase in frontal cortex. These results suggest that there is a direct relationship between the lipid peroxidation and nitrite contents during epileptic activity that can be responsible for the superoxide dismutase and catalase enzymatic activity changes observed during the establishment of seizures and SE induced by pilocarpine.

2010 ◽  
Vol 88 (5) ◽  
pp. 819-834 ◽  
Author(s):  
S. V. Rana ◽  
R. Pal ◽  
K. Vaiphei ◽  
R. P. Ola ◽  
K. Singh

This study evaluates the hepatoprotective effect of carotenoids against isoniazid (INH) and rifampicin (RIF). Thirty-six adult rats were divided into the following 4 groups: (1) control group treated with normal saline; (2) INH + RIF group treated with 50 mg·(kg body mass)–1·day–1 of INH and RIF each; (3) INH + RIF+ carotenoids group treated with 50 mg·(kg body mass)–1·day–1 of INH and RIF each and 10 mg·(kg body mass)–1·day–1 of carotenoids; and (4) carotenoids group treated with 10 mg·(kg body mass)–1·day–1 of carotenoids for 28 days intragastrically. Oxidative stress and antioxidant levels in liver and blood, liver histology and change in transaminases were measured in all the above-mentioned groups. There was an increase in lipid peroxidation with a reduction in thiols, catalase, and superoxide dismutase (SOD) in the liver and blood of rats accompanied by an increase in transaminases, bilirubin, and alkaline phosphatase. Treatment with carotenoids along with INH + RIF partially reversed lipid peroxidation, thiols, catalase, and SOD in the liver and blood of rats. Elevated levels of the enzymes in serum were also reversed partially by this treatment. The degree of necrosis, portal triaditis, and inflammation were also lowered in the carotenoids group. In conclusion, carotenoids supplementation in INH + RIF treated rats showed partial protection.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
A. C. Fortes ◽  
A. A. C. Almeida ◽  
G. A. L. Oliveira ◽  
P. S. Santos ◽  
W. De Lucca Junior ◽  
...  

2-[(2,6-Dichlorobenzylidene)amino]-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carbonitrile, 5TIO1, is a new 2-aminothiophene derivative with promising pharmacological activities. The aim of this study was to evaluate its antioxidant activity in different areas of mice central nervous system. Male Swiss adult mice were intraperitoneally treated with Tween 80 dissolved in 0.9% saline (control group) and 5TIO1 (0.1, 1, and 10 mg kg−1). Brain homogenates—hippocampus, striatum, frontal cortex, and cerebellum—were obtained after 24 h of observation. Superoxide dismutase and catalase activities, lipid peroxidation and nitrite content were measured using spectrophotometrical methods. To clarify the 5TIO1’s mechanism on oxidative stress, western blot analysis of superoxide dismutase and catalase was also performed. 5TIO1 decreased lipid peroxidation and nitrite content in all brain areas and increased the antioxidant enzymatic activities, specially, in cerebellum. The data of Western blot analysis did not demonstrate evidence of the upregulation of these enzymes after the administration of this compound. Our findings strongly support that 5TIO1 can protect the brain against neuronal damages regularly observed during neuropathologies.


2009 ◽  
Vol 2 (4) ◽  
pp. 214-221 ◽  
Author(s):  
Ítala Mônica Sales Santos ◽  
Adriana da Rocha Tomé ◽  
Gláucio Barros Saldanha ◽  
Paulo Michel Pinheiro Ferreira ◽  
Gardenia Carmem Gadelha Militão ◽  
...  

Ascorbic acid has many nonenzymatic actions and is a powerful water-soluble antioxidant. It protects low density lipoproteins from oxidation and reduces harmful oxidants in the central nervous system. Pilocarpine-induced seizures have been suggested to be mediated by increases in oxidative stress. Current studies have suggested that antioxidant compounds may afford some level of neuroprotection against the neurotoxicity of seizures. The objective of the present study was to evaluate the neuroprotective effects of ascorbic acid (AA) in rats, against the observed oxidative stress during seizures induced by pilocarpine. Wistar rats were treated with 0.9% saline (i.p., control group), ascorbic acid (500 mg/kg, i.p., AA group), pilocarpine (400 mg/kg, i.p., pilocarpine group), and the association of ascorbic acid (500 mg/kg, i.p.) plus pilocarpine (400 mg/kg, i.p.), 30 min before of administration of ascorbic acid (AA plus pilocarpine group). After the treatments all groups were observed for 6 h. The enzyme activities as well as the lipid peroxidation and nitrite concentrations were measured using spectrophotometric methods and the results compared to values obtained from saline and pilocarpine-treated animals. Protective effects of ascorbic acid were also evaluated on the same parameters. In pilocarpine group there was a significant increase in lipid peroxidation and nitrite level. However, no alteration was observed in superoxide dismutase and catalase activities. Antioxidant treatment significantly reduced the lipid peroxidation level and nitrite content as well as increased the superoxide dismutase and catalase activities in hippocampus of adult rats after seizures induced by pilocarpine. Our findings strongly support the hypothesis that oxidative stress in hippocampus occurs during seizures induced by pilocarpine, proving that brain damage induced by the oxidative process plays a crucial role in seizures pathogenic consequences, and also imply that a strong protective effect could be achieved using ascorbic acid.


2013 ◽  
Vol 64 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Seyed Fazel Nabavi ◽  
Solomon Habtemariam ◽  
Antoni Sureda ◽  
Akbar Hajizadeh Moghaddam ◽  
Maria Daglia ◽  
...  

Abstract Gallic acid has been identified as an antioxidant component of the edible and medicinal plant Peltiphyllum peltatum. The present study examined its potential protective role against sodium fluoride (NaF)-induced oxidative stress in rat erythrocytes. Oxidative stress was induced by NaF administration through drinking water (1030.675 mg m-3 for one week). Gallic acid at 10 mg kg-1 and 20 mg kg-1 and vitamin C for positive controls (10 mg kg-1) were administered daily intraperitoneally for one week prior to NaF administration. Thiobarbituric acid reactive substances, antioxidant enzyme activities (superoxide dismutase and catalase), and the level of reduced glutathione were evaluated in rat erythrocytes. Lipid peroxidation in NaF-exposed rats significantly increased (by 88.8 %) when compared to the control group (p<0.05). Pre-treatment with gallic acid suppressed lipid peroxidation in erythrocytes in a dose-dependent manner. Catalase and superoxide dismutase enzyme activities and glutathione levels were reduced by NaF intoxication by 54.4 %, 63.69 %, and 42 % (p<0.001; vs. untreated control group), respectively. Pre-treatment with gallic acid or vitamin C significantly attenuated the deleterious effects. Gallic acid isolated from Peltiphyllum peltatum and vitamin C mitigated the NaF-induced oxidative stress in rat erythrocytes.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Araceli Diaz-Ruiz ◽  
Patricia Vacio-Adame ◽  
Antonio Monroy-Noyola ◽  
Marisela Méndez-Armenta ◽  
Alma Ortiz-Plata ◽  
...  

After transient cerebral ischemia and reperfusion (I/R), damaging mechanisms, such as excitotoxicity and oxidative stress, lead to irreversible neurological deficits. The induction of metallothionein-II (MT-II) protein is an endogenous mechanism after I/R. Our aim was to evaluate the neuroprotective effect of MT-II after I/R in rats. Male Wistar rats were transiently occluded at the middle cerebral artery for 2 h, followed by reperfusion. Rats received either MT (10 μg per rat i.p.) or vehicle after ischemia. Lipid peroxidation (LP) was measured 22 h after reperfusion in frontal cortex and hippocampus; also, neurological deficit was evaluated after ischemia, using the Longa scoring scale. Infarction area was analyzed 72 hours after ischemia. Results showed increased LP in frontal cortex (30.7%) and hippocampus (26.4%), as compared to control group; this effect was fully reversed by MT treatment. Likewise, we also observed a diminished neurological deficit assessed by the Longa scale in those animals treated with MT compared to control group values. The MT-treated group showed a significant (P<0.05) reduction of 39.9% in the infarction area, only at the level of hippocampus, as compared to control group. Results suggest that MT-II may be a novel neuroprotective treatment to prevent ischemia injury.


Author(s):  
Purabi Deka ◽  
Arun Kumar

Objective: The objective of the study was to investigate the memory improving activity of Triphala Churna hydro-methanolic fruit extract on learning and memory functions in Streptozotocin (I. C. V) induced dementia in rats by using morris water maze and elevated plus maze.Methods: A total of 42 albino wistar rats weighing 80-100 g were randomized into 7 equal groups as follows: Normal control group received normal saline (1 ml/kg p. o.) for 24 d, STZ treated group (3 mg/kg, i. c. v) were administered in two dosage regimen i.e. on first day and third day.), Standard group: Streptozotocin (3 mg/kg i. c. v)+Vitamin E (100 mg/kg/day p. o.) were administered for 21 d, Standard group: Streptozotocin (3 mg/kg i. c. v)+Rivastigmine (2 mg/kg/day p. o.) were administered for 21 d. The learning and memory-impaired rats were treated with Triphala Churna Formulation 1, Triphala Churna Formulation 2 and Triphala Churna Formulation 3 for 21 d (100 mg/kg p. o.). AchE activity, lipid peroxidation, superoxide dismutase, glutathione level of brain homogenate was estimated in Control/STZ (I. C. V)/Standard/Triphala Churna fruits extract treated rats.Results: Administration of Triphala Churna fruits extract significantly restored learning and memory impairment induced by STZ (I. C. V) in the elevated plus maze and morris water maze. Furthermore, in the TPLC F2 and TPLC F3 treated group brain AchE level was decreased (P≤0.01) as well as brain lipid peroxidation was also decreased (P≤0.001). Brain antioxidant enzymes such as glutathione level were increased (P≤0.001) in the TPLC1 and TPLC2 treated group when compared to the STZ treated group, TPLC F2 and TPLC F3 treated group showed significant (P≤0.001, P≤0.01) increase in superoxide dismutase level. Conclusion: Triphala Churna fruits extract has an improving effect on learning and memory impairment rats produced by Streptozotocin (I. C. V) and may have a useful effect in the treatment of dementia and Alzheimer's disease.


2022 ◽  
Vol 20 (4) ◽  
pp. 63-70
Author(s):  
O. V. Smirnova ◽  
V. V. Tsukanov ◽  
A. A. Sinyakov ◽  
O. L. Moskalenko ◽  
N. G. Elmanova ◽  
...  

Background. The problem of gastric cancer remains unresolved throughout the world, while chronic atrophic gastritis (CAG) increases the likelihood of its development by 15 times. In the Russian Federation, the incidence of gastric cancer (GC) is among the highest, with it prevailing among males. One of the leading mechanisms in molecular pathology of membranes is lipid peroxidation (LPO). The severity of oxidative membrane damage depends on concomitant diseases, contributing to emergence and progression of pathological processes and development of cancer. Currently, the problem of LPO is unsolved in biological systems.The aim of this study was to investigate the state of LPO and antioxidant defense system in CAG and GC. Materials and methods. The parameters were studied in 45 patients with CAG and 50 patients with GC. The control group included 50 practically healthy volunteers without gastrointestinal complaints, who did not have changes in the gastric mucosa according to the fibroesophagogastroduodenoscopy (FEGDS) findings.Results. In patients with CAG, an increase in malondialdehyde, superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase was found in the blood plasma compared with the control group. In patients with CAG, lipid peroxidation was activated, and the malondialdehyde level increased by 3.5 times relative to normal values. At the same time, the body fought against oxidative stress by increasing the activity of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase. All patients with GC showed pronounced oxidative stress in the blood plasma in the form of a 45-fold increase in malondialdehyde. The activity of the main antioxidant enzyme superoxide dismutase was reduced in GC. Catalase was activated, which indicated pronounced oxidative stress, significant damage to blood vessels, and massive cell death. Glutathione-related enzymes (glutathione S-transferase and glutathione peroxidase) and the antioxidant protein ceruloplasmin were activated, which also indicated significant oxidative stress and severe intoxication in patients with GC.Conclusion. Depending on the stage and type of cancer, an in-depth study of lipid peroxidation and factors of the antioxidant defense system can be used to correct therapy and prevent cancer and can serve as markers of progression and prognosis in gastric cancer. 


2005 ◽  
Vol 2005 (1) ◽  
pp. 57-59 ◽  
Author(s):  
Ali Cetinkaya ◽  
Ergul Belge Kurutas ◽  
Mehmet Akif Buyukbese ◽  
Bulent Kantarceken ◽  
Ertan Bulbuloglu

We aimed to determine whether patients with subclinical hyperthyroidism (SH) are subject to oxidative stress. Twenty-two women and 8 men having endogenous subclinical hyperthyroidism for a duration of at least 6 months, and 21 women and 9 men healthy controls were included in this study. We measured the level of plasma malondialdehyde, as one of the lipid peroxidation markers, and the activity of erythrocyte superoxide dismutase, which is an antioxidant enzyme. The activity of erythrocyte superoxide dismutase and plasma malondialdehyde levels were found to be significantly higher in subjects with subclinical hyperthyroidism than the control group (P<.01). The results of this study suggest that oxidative stress and antioxidative response could be increased in patients having subclinical hyperthyroidism.


2016 ◽  
Vol 36 (1) ◽  
pp. 42-50 ◽  
Author(s):  
Adil Mehraj Khan ◽  
Satyavan Rampal ◽  
Naresh Kumar Sood

The effect of 21 days of repeated oral administration of levofloxacin and enrofloxacin both alone and in combination with meloxicam, on the oxidative balance in blood was evaluated in rabbits. Rabbits were randomly allocated to six groups of four animals each. Control group was gavaged 5% dextrose and 2% benzyl alcohol. Three groups were exclusively gavaged meloxicam (0.2 mg/kg body weight o.d.), levofloxacin hemihydrate (10 mg/kg body weight b.i.d 12 h), and enrofloxacin (20 mg/kg body weight o.d.), respectively. Two other groups were co-gavaged meloxicam with levofloxacin hemihydrate and enrofloxacin, respectively. A reduction ( p < 0.05) of reduced glutathione levels was observed in groups treated with meloxicam both alone and in combination with levofloxacin, whereas an increase ( p < 0.01) in the levels of this antioxidant was observed in the groups treated with enrofloxacin. The activities of enzymes, glutathione peroxidase and superoxide dismutase, were induced ( p < 0.05) in levofloxacin-alone treated group. Superoxide dismutase was also induced ( p < 0.05) in meloxicam-alone treated group and inhibited ( p < 0.05) in enrofloxacin-meloxicam co-treated group. The activity of catalase was non-significantly different between various groups. Enrofloxacin-treated groups had higher ( p < 0.01) lipid peroxidation than control and levofloxacin-alone treated groups. Elevated lipid peroxidation was also observed in the groups treated with meloxicam both alone and in combination with levofloxacin ( p < 0.05). In conclusion, these drugs have potential to induce oxidative imbalance, however, compared to levofloxacin, more oxidative damage is produced by enrofloxacin and meloxicam.


2018 ◽  
Vol 87 (4) ◽  
pp. 379-385 ◽  
Author(s):  
Mehtap Ozcelik ◽  
Mine Erişir ◽  
Osman Guler ◽  
Murat Baykara ◽  
Esra Kirman

The effect of irradiation on oxidants and antioxidants in selected tissues and a possible protective effect of curcumin on these indices were investigated. A total of 28 rats were divided into 3 groups; group 1 was control; group 2 was the irradiation group, saline was administered intraperiotenally (i.p.) for three days and then, 9 Gy gamma irradiation was applied; group 3 was the irradiation + curcumin group: curcumin was given i.p. for three days at 200 mg/kg body weight and then the same dose of irradiation was applied. A significant increase in malondialdehyde (MDA) was detected in the liver, kidney, and brain tissues of the rats as a result of irradiation (P< 0.01). Glutathione peroxidase (GSH-Px) activity in all the tissues (except for kidneys) decreased (P< 0.01), liver SOD (superoxide dismutase) activity decreased (P< 0.05), and GSH (glutathione) levels in kidney and ovary tissues (P< 0.001) significantly increased. While curcumin administration returned the increased MDA levels in the kidneys and brain in result of irradiation to normal (P< 0.01), it did not return the increased MDA levels in the liver tissue to normal (P< 0.001) despite significantly reducing them. While decreased GSH-Px and SOD activity in the liver in result of irradiation increased with the addition of curcumin (P< 0.05), increased GSH levels in the kidneys and ovaries returned to control levels (P< 0.001). When MDA values were examined, it was found that the addition of curcumin protected the liver, kidneys and brain from the oxidative damage caused by irradiation.


Sign in / Sign up

Export Citation Format

Share Document