scholarly journals Experimental Study on Energy Consumption and Performance of Hydroxyethyl Ethylenediamine Solution for CO2 Capture

2019 ◽  
Vol 9 (12) ◽  
pp. 2929-2940
Author(s):  
Bingcheng Liu ◽  
Ting Wang ◽  
Xuan Yang ◽  
Pen-Chi Chiang
Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2184
Author(s):  
Simeng Li ◽  
Han Li ◽  
Yanmei Yu ◽  
Jian Chen

N-(2-Hydroxyethyl) piperazine (HEPZ) has a chemical structure similar to PZ and has less volatility. It is not easy to volatilize in a continuous operation device. It is studied to replace PZ as a promotor to increase the CO2 capture rate. This paper researches the lowest energy consumption and absorbent loss of HEPZ/H2O in the absorption-regeneration process, and compares it with another five amines, including PZ, MEA, 1-MPZ, AMP and DMEA. Based on the thermodynamic model, this work establishes a process simulation based on the equilibrium stage, assuming that all stages of the absorption and desorption towers reach thermodynamic equilibrium and CO2 recovery in the absorption tower is 90%. By optimizing the process parameters, the lowest thermodynamic energy consumption and absorbent loss of process operation are obtained. Our results show that HEPZ as a promotor to replace PZ and MEA has significant economic value. The lowest reboiler energy consumption of HEPZ with the optimal process parameters is 3.018 GJ/tCO2, which is about 35.2% lower than that of PZ and about 11.6% lower than that of MEA, and HEPZ has the lowest solvent loss. The cyclic capacity is 64.7% higher than PZ and 21.6% lower than primary amine MEA.


2018 ◽  
Vol 284 ◽  
pp. 1327-1331
Author(s):  
Albert Viktorovich Korolev ◽  
A.F. Balaev ◽  
A.A. Korolev

The paper provides the comparison of vibromechanical technology for stabilization of bearing rings and thermal tempering on the following parameters: performance, energy consumption, and magnitude of residual stresses after treatment. To assess the effectiveness of residual stress relaxation through the usage of vibromechanical energy, there were conducted experimental studies on a specially designed and manufactured prototype of the equipment. The results of experimental studies show that the energy consumption during vibromechanical stabilization is ten times less, and performance is several times higher than during the thermal tempering. Moreover, vibromechanical stabilization allows more effective residual stresses relaxation. The costs for capital investment can be reduced, as the cost of equipment for vibromechanical stabilization is ten times less than the cost of electric furnaces.


1996 ◽  
Vol 34 (11) ◽  
pp. 125-132 ◽  
Author(s):  
Baozhen Wang ◽  
Wenyi Dong ◽  
Jinlan Zhang ◽  
Xiangdong Cao

The results of an experimental study conducted in a full-scale high rate pond system treating piggery wastewater at Jianfengshan Piggery, Panyu City, Guandong Province, are presented. The system consists of two advanced anaerobic ponds (AAP) in parallel, followed by an anaerobic transformation pond (ATP) and a five-cell algae-bacterial pond (ABP). The mechanism of the AAP is described and the hydraulic flow pattern analyzed. Fermentation pits (FP) built on the bottom performed very efficiently, operating like UASB in principle. A new concept of ATP is advanced, based on its ability to transform poorly degradable materials to more easily degradable ones. It was found in the study that the HRP system was more efficient, more reliable and saved 40% land area compared with a conventional pond system. Economic analyses of both the energy consumption and the benefit to the pond system of fish farming are also included in the paper.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 229
Author(s):  
Xianzhong Tian ◽  
Juan Zhu ◽  
Ting Xu ◽  
Yanjun Li

The latest results in Deep Neural Networks (DNNs) have greatly improved the accuracy and performance of a variety of intelligent applications. However, running such computation-intensive DNN-based applications on resource-constrained mobile devices definitely leads to long latency and huge energy consumption. The traditional way is performing DNNs in the central cloud, but it requires significant amounts of data to be transferred to the cloud over the wireless network and also results in long latency. To solve this problem, offloading partial DNN computation to edge clouds has been proposed, to realize the collaborative execution between mobile devices and edge clouds. In addition, the mobility of mobile devices is easily to cause the computation offloading failure. In this paper, we develop a mobility-included DNN partition offloading algorithm (MDPO) to adapt to user’s mobility. The objective of MDPO is minimizing the total latency of completing a DNN job when the mobile user is moving. The MDPO algorithm is suitable for both DNNs with chain topology and graphic topology. We evaluate the performance of our proposed MDPO compared to local-only execution and edge-only execution, experiments show that MDPO significantly reduces the total latency and improves the performance of DNN, and MDPO can adjust well to different network conditions.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4089
Author(s):  
Kaiqiang Zhang ◽  
Dongyang Ou ◽  
Congfeng Jiang ◽  
Yeliang Qiu ◽  
Longchuan Yan

In terms of power and energy consumption, DRAMs play a key role in a modern server system as well as processors. Although power-aware scheduling is based on the proportion of energy between DRAM and other components, when running memory-intensive applications, the energy consumption of the whole server system will be significantly affected by the non-energy proportion of DRAM. Furthermore, modern servers usually use NUMA architecture to replace the original SMP architecture to increase its memory bandwidth. It is of great significance to study the energy efficiency of these two different memory architectures. Therefore, in order to explore the power consumption characteristics of servers under memory-intensive workload, this paper evaluates the power consumption and performance of memory-intensive applications in different generations of real rack servers. Through analysis, we find that: (1) Workload intensity and concurrent execution threads affects server power consumption, but a fully utilized memory system may not necessarily bring good energy efficiency indicators. (2) Even if the memory system is not fully utilized, the memory capacity of each processor core has a significant impact on application performance and server power consumption. (3) When running memory-intensive applications, memory utilization is not always a good indicator of server power consumption. (4) The reasonable use of the NUMA architecture will improve the memory energy efficiency significantly. The experimental results show that reasonable use of NUMA architecture can improve memory efficiency by 16% compared with SMP architecture, while unreasonable use of NUMA architecture reduces memory efficiency by 13%. The findings we present in this paper provide useful insights and guidance for system designers and data center operators to help them in energy-efficiency-aware job scheduling and energy conservation.


Heliyon ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. e05982
Author(s):  
Daryadokht Masror Roudsari ◽  
Shahoo Feizi ◽  
Mahtab Maghsudlu

Sign in / Sign up

Export Citation Format

Share Document