scholarly journals The Impact of the Block Freeze Concentration Process on Human Milk Properties Intended for Feeding Newborns

2017 ◽  
Vol 08 (04) ◽  
pp. 402-418 ◽  
Author(s):  
Ana Claudia Berenhauser ◽  
Maria Helena Machado Canella ◽  
Isabella de Bona Muñoz ◽  
Elane Schwinden Prudencio ◽  
J. Vladimir Oliveira ◽  
...  
2011 ◽  
Vol 10 (7) ◽  
pp. 955-958 ◽  
Author(s):  
Shunitz Tanaka ◽  
Yingjie Dai ◽  
Ying Zhang ◽  
Baiyin Liu ◽  
Masahiro Teduka ◽  
...  

Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1476
Author(s):  
Jian Zhang ◽  
Ai Zhao ◽  
Shiyun Lai ◽  
Qingbin Yuan ◽  
Xiaojiang Jia ◽  
...  

Our knowledge related to human milk proteins is still limited. The present study determined the changes in multiple human milk proteins during the first six months of lactation, investigated the influencing factors of milk proteins, and explored the impact of milk proteins on infant growth. A total of 105 lactating women and their full-term infants from China were prospectively surveyed in this research. Milk samples were collected at 1–5 days, 8–14 days, 1 month, and 6 months postpartum. Concentrations of total protein and α-lactalbumin were measured in all milk samples, and concentrations of lactoferrin, osteopontin, total casein, β-casein, αs−1 casein, and κ-casein were measured in milk from 51 individuals using ultra performance liquid chromatography coupled with mass spectrometry. The concentration of measured proteins in the milk decreased during the first six months of postpartum (p-trend < 0.001). Maternal age, mode of delivery, maternal education, and income impacted the longitudinal changes in milk proteins (p-interaction < 0.05). Concentrations of αs−1 casein in milk were inversely associated with the weight-for-age Z-scores of the infants (1 m: r −0.29, p 0.038; 6 m: r −0.33, p 0.020). In conclusion, the concentration of proteins in milk decreased over the first six months postpartum, potentially influenced by maternal demographic and delivery factors. Milk protein composition may influence infant weights.


2016 ◽  
Vol 105 (1) ◽  
pp. 177-184 ◽  
Author(s):  
Kelly A Dingess ◽  
Christina J Valentine ◽  
Nicholas J Ollberding ◽  
Barbara S Davidson ◽  
Jessica G Woo ◽  
...  

2009 ◽  
Vol 35 (1) ◽  
pp. 133-137
Author(s):  
Kenji Kawasaki ◽  
Hiroyuki Ota ◽  
Eiji Iritani ◽  
Nobuyuki Katagiri ◽  
Akira Matsuda

2017 ◽  
Vol 12 (9) ◽  
pp. 566-569 ◽  
Author(s):  
Anastasia Mantziari ◽  
Juhani Aakko ◽  
Himanshu Kumar ◽  
Satu Tölkkö ◽  
Elloise du Toit ◽  
...  

PEDIATRICS ◽  
1990 ◽  
Vol 85 (4) ◽  
pp. 548-552
Author(s):  
Emily Tseng ◽  
Susan M. Potter ◽  
Mary Frances Picciano

Total cholesterol and triglyceride concentrations were measured in plasma samples taken at 4 and 8 weeks of age from 40 full-term infants who had been fed either human milk or one of three formulas containing casein-to-whey ratios of 82:18, 66:34, or 50:50 to investigate whether dietary protein influenced the development of plasma lipid profiles. Infants fed the formula with the casein-to-whey ratio of 82:18 had significantly higher plasma cholesterol levels at both 4 and 8 weeks of age compared with other groups of infants (P &lt; .05). Infants fed the high-casein formula also showed an increase in plasma cholesterol levels with time (P &lt; .001). Plasma triglyceride concentrations decreased as concentration of casein decreased (P &lt; .05) among the formula-fed groups and increased with time. Infants fed human milk had plasma triglyceride concentrations similar to those infants who had been fed the 82:18 formula at 4 weeks of age; however, triglyceride concentrations eventually fell and were similar to those concentrations in infants who had been fed the 50:50 formula at 8 weeks of age. Results indicate that constituent lipids of human milk or formulas were not determining factors for changes observed in plasma cholesterol levels and triglyceride concentrations among groups. Since formulas differed only in proteins and their constituent amino acids, further investigation of the impact of dietary protein (amino acids) on development of blood lipid profiles in infants is warranted.


2021 ◽  
Vol 46 (1) ◽  
pp. 10-26 ◽  
Author(s):  
Michael A. Pitino ◽  
Deborah L. O’Connor ◽  
Allison J. McGeer ◽  
Sharon Unger

Holder pasteurization (62.5 °C, 30 min) of human milk is thought to reduce the risk of transmitting viruses to an infant. Some viruses may be secreted into milk – others may be contaminants. The effect of thermal pasteurization on viruses in human milk has yet to be rigorously reviewed. The objective of this study is to characterize the effect of common pasteurization techniques on viruses in human milk and non-human milk matrices. Databases (MEDLINE, Embase, Web of Science) were searched from inception to April 20th, 2020, for primary research articles assessing the impact of pasteurization on viral load or detection of live virus. Reviews were excluded, as were studies lacking quantitative measurements or those assessing pasteurization as a component of a larger process. Overall, of 65 131 reports identified, 109 studies were included. Pasteurization of human milk at a minimum temperature of 56−60 °C is effective at reducing detectable live virus. In cell culture media or plasma, coronaviruses (e.g., SARS-CoV, SARS-CoV-2, MERS-CoV) are highly susceptible to heating at ≥56 °C. Although pasteurization parameters and matrices reported vary, all viruses studied, except parvoviruses, were susceptible to thermal killing. Future research important for the study of novel viruses should standardize pasteurization protocols and should test inactivation in human milk. Novelty In all matrices, including human milk, pasteurization at 62.5 °C was generally sufficient to reduce surviving viral load by several logs or to below the limit of detection. Holder pasteurization (62.5 °C, 30 min) of human milk should be sufficient to inactivate nonheat resistant viruses, including coronaviruses, if present.


Nutrients ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 934 ◽  
Author(s):  
Gabriela E. Leghi ◽  
Merryn J. Netting ◽  
Philippa F. Middleton ◽  
Mary E. Wlodek ◽  
Donna T. Geddes ◽  
...  

Maternal obesity has been associated with changes in the macronutrient concentration of human milk (HM), which have the potential to promote weight gain and increase the long-term risk of obesity in the infant. This article aimed to provide a synthesis of studies evaluating the effects of maternal overweight and obesity on the concentrations of macronutrients in HM. EMBASE, MEDLINE/PubMed, Cochrane Library, Scopus, Web of Science, and ProQuest databases were searched for relevant articles. Two authors conducted screening, data extraction, and quality assessment independently. A total of 31 studies (5078 lactating women) were included in the qualitative synthesis and nine studies (872 lactating women) in the quantitative synthesis. Overall, maternal body mass index (BMI) and adiposity measurements were associated with higher HM fat and lactose concentrations at different stages of lactation, whereas protein concentration in HM did not appear to differ between overweight and/or obese and normal weight women. However, given the considerable variability in the results between studies and low quality of many of the included studies, further research is needed to establish the impact of maternal overweight and obesity on HM composition. This is particularly relevant considering potential implications of higher HM fat concentration on both growth and fat deposition during the first few months of infancy and long-term risk of obesity.


Glycobiology ◽  
2020 ◽  
Vol 30 (10) ◽  
pp. 774-786 ◽  
Author(s):  
Sara Porfirio ◽  
Stephanie Archer-Hartmann ◽  
G Brett Moreau ◽  
Girija Ramakrishnan ◽  
Rashidul Haque ◽  
...  

Abstract Human breast milk is an incredibly rich and complex biofluid composed of proteins, lipids and complex carbohydrates, including a diverse repertoire of free human milk oligosaccharides (HMOs). Strikingly, HMOs are not digested by the infant but function as prebiotics for bacterial strains associated with numerous benefits. Considering the broad variety of beneficial effects of HMOs, and the vast number of factors that affect breast milk composition, the analysis of HMO diversity and complexity is of utmost relevance. Using human milk samples from a cohort of Bangladeshi mothers participating in a study on malnutrition and stunting in children, we have characterized breast milk oligosaccharide composition by means of permethylation followed by liquid chromatography coupled with high-resolution tandem mass spectrometry (LC-MS/MS) analysis. This approach identified over 100 different glycoforms and showed a wide diversity of milk composition, with a predominance of fucosylated and sialylated HMOs over nonmodified HMOs. We observed that these samples contain on average 80 HMOs, with the highest permethylated masses detected being &gt;5000 mass units. Here we report an easily implemented method developed for the separation, characterization and relative quantitation of large arrays of HMOs, including higher molecular weight sialylated HMOs. Our ultimate goal is to create a simple, high-throughput method, which can be used for full characterization of sialylated and/or fucosylated HMOs. These results demonstrate how current analytical techniques can be applied to characterize human milk composition, providing new tools to help the scientific community shed new light on the impact of HMOs during infant development.


Sign in / Sign up

Export Citation Format

Share Document