Understanding the past, getting prepared for the future. (Going from in vivo to in vitro to in silico)

2021 ◽  
Vol 17 (10) ◽  
pp. 787-789
Author(s):  
Patrick W. Serruys ◽  
Ahmed Elkoumy ◽  
Osama Soliman
Keyword(s):  
The Past ◽  
Lab on a Chip ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 795-820
Author(s):  
Andrea Spanu ◽  
Laura Martines ◽  
Annalisa Bonfiglio

This review focuses on the applications of organic transistors in cellular interfacing. It offers a comprehensive retrospective of the past, an overview of the latest innovations, and a glance on the future perspectives of this fast-evolving field.


Sci ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 45
Author(s):  
Eleonore Fröhlich

Animal testing is mandatory in drug testing and is the gold standard for toxicity and efficacy evaluations. This situation is expected to change in the future as the 3Rs principle, which stands for the replacement, reduction, and refinement of the use of animals in science, is reinforced by many countries. On the other hand, technologies for alternatives to animal testing have increased. The need to develop and use alternatives depends on the complexity of the research topic and also on the extent to which the currently used animal models can mimic human physiology and/or exposure. The lung morphology and physiology of commonly used animal species differs from that of human lungs, and the realistic inhalation exposure of animals is challenging. In vitro and in silico methods can assess important aspects of the in vivo effects, namely particle deposition, dissolution, action at, and permeation through, the respiratory barrier, and pharmacokinetics. This review discusses the limitations of animal models and exposure systems and proposes in vitro and in silico techniques that could, when used together, reduce or even replace animal testing in inhalation testing in the future.


Author(s):  
Eleonore Fröhlich

Testing in animals is mandatory in drug testing and the gold standard for evaluation of toxicity. This situation is expected to change in the future because the 3Rs principle, which stands for replacement, reduction and refinement of the use of animals in science, is reinforced by many countries. On the other hand, technologies for alternatives to animals experiments have increased. The necessity to develop and use of alternatives is influenced by the complexity of the research topic and also by the fact, to which extent the currently used animal models can mimic human physiology and/or exposure. Rodent lung morphology and physiology differs markedly for that of humans and inhalation exposure of the animals are challenging. In vitro and in silico methods can assess important aspects of the in vivo action, namely particle deposition, dissolution, action at and permeation across the respiratory barrier and pharmacokinetics. Out of the numerous homemade in vitro and in silico models some are available commercially or open access. This review discusses limitations of animal models and exposure systems and proposes a panel of in vitro and in silico techniques that, in the future, may replace animal experimentation in inhalation testing.


2012 ◽  
Vol 303 (9) ◽  
pp. L733-L747 ◽  
Author(s):  
Brijeshkumar Patel ◽  
Robert Gauvin ◽  
Shahriar Absar ◽  
Vivek Gupta ◽  
Nilesh Gupta ◽  
...  

Development of lung models for testing a drug substance or delivery system has been an intensive area of research. However, a model that mimics physiological and anatomical features of human lungs is yet to be established. Although in vitro lung models, developed and fine-tuned over the past few decades, were instrumental for the development of many commercially available drugs, they are suboptimal in reproducing the physiological microenvironment and complex anatomy of human lungs. Similarly, intersubject variability and high costs have been major limitations of using animals in the development and discovery of drugs used in the treatment of respiratory disorders. To address the complexity and limitations associated with in vivo and in vitro models, attempts have been made to develop in silico and tissue-engineered lung models that allow incorporation of various mechanical and biological factors that are otherwise difficult to reproduce in conventional cell or organ-based systems. The in silico models utilize the information obtained from in vitro and in vivo models and apply computational algorithms to incorporate multiple physiological parameters that can affect drug deposition, distribution, and disposition upon administration via the lungs. Bioengineered lungs, on the other hand, exhibit significant promise due to recent advances in stem or progenitor cell technologies. However, bioengineered approaches have met with limited success in terms of development of various components of the human respiratory system. In this review, we summarize the approaches used and advancements made toward the development of in silico and tissue-engineered lung models and discuss potential challenges associated with the development and efficacy of these models.


2008 ◽  
Vol 149 (4) ◽  
pp. 153-159 ◽  
Author(s):  
Zsuzsanna Rácz ◽  
Péter Hamar

A genetikában új korszak kezdődött 17 éve, amikor a petúniában felfedezték a koszuppressziót. Később a koszuppressziót azonosították a növényekben és alacsonyabb rendű eukariótákban megfigyelt RNS-interferenciával (RNSi). Bár a növényekben ez ősi vírusellenes gazdaszervezeti védekezőmechanizmus, emlősökben az RNSi élettani szerepe még nincs teljesen tisztázva. Az RNSi-t rövid kettős szálú interferáló RNS-ek (short interfering RNA, siRNS) irányítják. A jelen cikkben összefoglaljuk az RNSi történetét és mechanizmusát, az siRNS-ek szerkezete és hatékonysága közötti összefüggéseket, a célsejtbe való bejuttatás virális és nem virális módjait. Az siRNS-ek klinikai alkalmazásának legfontosabb akadálya az in vivo alkalmazás. Bár a hidrodinamikus kezelés állatokban hatékony, embereknél nem alkalmazható. Lehetőséget jelent viszont a szervspecifikus katéterezés. A szintetizált siRNS-ek ismert mellékhatásait szintén tárgyaljuk. Bár a génterápia ezen új területén számos problémával kell szembenézni, a sikeres in vitro és in vivo kísérletek reményt jelentenek emberi betegségek siRNS-sel történő kezelésére.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2019 ◽  
Vol 18 (26) ◽  
pp. 2209-2229 ◽  
Author(s):  
Hai Pham-The ◽  
Miguel Á. Cabrera-Pérez ◽  
Nguyen-Hai Nam ◽  
Juan A. Castillo-Garit ◽  
Bakhtiyor Rasulev ◽  
...  

One of the main goals of in silico Caco-2 cell permeability models is to identify those drug substances with high intestinal absorption in human (HIA). For more than a decade, several in silico Caco-2 models have been made, applying a wide range of modeling techniques; nevertheless, their capacity for intestinal absorption extrapolation is still doubtful. There are three main problems related to the modest capacity of obtained models, including the existence of inter- and/or intra-laboratory variability of recollected data, the influence of the metabolism mechanism, and the inconsistent in vitro-in vivo correlation (IVIVC) of Caco-2 cell permeability. This review paper intends to sum up the recent advances and limitations of current modeling approaches, and revealed some possible solutions to improve the applicability of in silico Caco-2 permeability models for absorption property profiling, taking into account the above-mentioned issues.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Sign in / Sign up

Export Citation Format

Share Document