An Overview of Side Impact Crash Testing Results-Estimating the Differences Between FMVSS 214-D and High Speed Lateral Impact Testing

Author(s):  
P. Michael Miller ◽  
Younghan Youn
Author(s):  
Mohammad Atarod

The present study examined trends in occupant dynamics during side impact testing in vehicle models over the past decade. “Moderate-to-high” speed side impacts (delta-V ≥15 km/h) were analyzed. The Insurance Institute for Highway Safety (IIHS) side impact crash data was examined ( N = 126). The test procedure involved a moving deformable barrier (MDB) impacting the sides of stationary vehicles at 50.0 km/h. Instrumented 5th-percentile female SID IIs dummies were positioned in the driver and left rear passenger seats. Occupant head, neck, shoulder, torso, spine, and pelvis/femur responses (times histories, peaks, and time-to-peak values) were evaluated and compared to injury assessment reference values (IARVs). The effects of delta-V, vehicle model year, vehicle body type, and occupant seating position on dynamic responses were examined. The vehicle lateral delta-Vs ranged from 15.9 to 34.5 km/h. The MY2018-2020 demonstrated lower peak dynamics than MY2010-2013, for the driver head acceleration (53.7 ± 11.3 g vs 46.4 ± 11.6 g), shoulder lateral forces (1.7 ± 0.7 kN vs 1.5 ± 0.2 kN), average rib deflection (29.8 ± 8.3 mm vs 28.4 ± 6.2 mm), spine accelerations at T4 (51.4 ± 23.4 g vs 39.6 ± 5.9 g) and T12 (56.3 ± 18.5 g vs 45.2 ± 9.6 g), iliac forces (1.9 ± 1.0 kN vs 1.2 ± 0.9 kN), and acetabular forces (1.9 ± 0.8 kN vs 1.3 ± 0.5 kN). The driver indicated statistically higher dynamic responses than the left rear passenger. Higher wheelbase vehicles generally showed lower occupant loading than the smaller vehicles. In conclusion, a reduction in occupant loading and risks for injury was observed in vehicle models over the past decade. This provides further insight into injury mechanisms, occupant dynamics simulations, and seat/restraint design.


2009 ◽  
Vol 131 (1) ◽  
Author(s):  
J. J. M. Zaal ◽  
W. D. van Driel ◽  
F. J. H. G. Kessels ◽  
G. Q. Zhang

The increased use of mobile appliances such as mobile phones and navigation systems in today’s society has resulted in an increase in reliability issues related to drop performance. Mobile appliances are dropped several times during their lifespan and the product is required to survive common drop accidents. A widely accepted method to assess the drop reliability of microelectronics on board-level is the drop impact test. This test has been standardized by international councils such as Joint Electron Device Engineering Council and is widely adopted throughout the industry. In this research the solder loading is investigated by combining high-speed camera measurements of several drop impact tests with verified finite element models. These simulation models are developed in order to gain an insight on the loading pattern of solder joints based on interconnect layout, drop conditions, and product specifications prior to physical prototyping. Deflections and frequencies during drop testing are measured using a high-speed camera setup. The high-speed camera experiments are performed on two levels: machine level (rebounds with and without a catcher) and product level (with different levels of energy and different pulse times). Parametric (dynamic and quasistatic) 3D models are developed to predict the drop impact performance. The experimental results are used to verify and enhance the simulation models, e.g., by tuning the damping parameters. As a result, the verified models can be used to determine the location of the critical solder joint and to obtain estimates of the solder lifetime performance.


Author(s):  
Alex Francis ◽  
Ilya Avdeev ◽  
Calvin Berceau ◽  
Hugo Pires Lage Martins ◽  
Luke Steinbach ◽  
...  

The objective of this study is to find a structural alternative to jellyroll in order to safely conduct experimental crash testing of lithium-ion battery packs in academic laboratory environment. A procedure for lateral impact experiments has been developed and conducted on cylindrical cells and phantom cells using a flat rigid drop cart in a custom-built impact test apparatus. The main component of a cylindrical cell, jellyroll, is a layered spiral structure which consists of thin layers of electrodes and separator material. We investigate various phantom materials — candidates to replace the layered jellyroll with a homogeneous anisotropic material. During our experimentation with various phantom cells, material properties and internal geometries of additively manufactured components such as in-fill pattern, density and voids were adjusted in order to develop accurate deformation response. The deformation of the phantom cell was characterized and compared after impact testing with the actual lithium-ion cells. The experimental results were also compared with explicit simulations (LS-DYNA). This work shows progress toward an accurate and safe experimental procedure for structural impact testing on the entire battery pack consisting of thousands of volatile cells. Understanding battery and battery pack structural response can influence design and improve safety of electric vehicles.


Author(s):  
Liang Xue ◽  
Claire R. Coble ◽  
Hohyung Lee ◽  
Da Yu ◽  
Satish Chaparala ◽  
...  

Response of brittle plate to impact loads has been the subject of many research studies [1–7]. Specifically, glass presents a wide variety of applications in daily life, and helps to protect the displays of smartphones, tablets, PCs, and TVs from everyday wear and tear. Therefore, the necessity of glass to resist scratches, drop impacts, and bumps from everyday use leads to the importance of investigation of the glass response under dynamic impact loading. The ball drop test has been applied in the past, specifying an energy threshold as a prediction metric. Use of energy as the key parameter in impact testing is limited, since it does not account for the time spent in contact during the impact event. This study attempts to establish a reliable metric for impact testing based on a momentum change threshold. The deformation and the strain of the glass will be obtained by the Digital Image Correlation (DIC) system, while the rebound velocity will be measured with the high speed cameras. The global and local measurements are conducted to verify the accuracy of the experimental results. Finally, the FEA model is developed using ANSYS/LS-DYNA to provide a comprehensive understanding of the dynamic response of the glass. Excellent correlation in deflection is obtained between the measurements and predictions.


Author(s):  
Yasushi Hara ◽  
Katsura Matsubara ◽  
Ken-ichi Mizuno ◽  
Toru Shimamori ◽  
Hiro Yoshida

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1350 °C in accordance with the project goals, we developed two silicon nitride materials with further improved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. On applying these silicon nitride ceramics to CGT engine, we evaluated various properties of silicon nitride materials considering the environment in CGT engine. Particle impact testing is one of those evaluations. Materials used in CGT engine are exposed in high speed gas flow, and impact damage of these materials is considered to be a concern. We tested ST-1 in the particle impact test. In this test, we observed fracture modes, and estimated the critical impact velocity. This paper summarizes the development of silicon nitride components, and the result of evaluations of these silicon nitride materials.


2017 ◽  
Vol 17 (07) ◽  
pp. 1740039 ◽  
Author(s):  
ZHENGWEI MA ◽  
LELE JING ◽  
FENGCHONG LAN ◽  
JINLUN WANG ◽  
JIQING CHEN

Finite element modeling has played a significant role in the study of human body biomechanical responses and injury mechanisms during vehicle impacts. However, there are very few reports on similar studies conducted in China for the Chinese population. In this study, a high-precision human body finite element model of the Chinese 50th percentile male was developed. The anatomical structures and mechanical characteristics of real human body were replicated as precise as possible. In order to analyze the model’s biofidelity in side-impact injury prediction, a global technical standard, ISO/TR 9790, was used that specifically assesses the lateral impact biofidelity of anthropomorphic test devices (ATDs) and computational models. A series of model simulations, focusing on different body parts, were carried out against the tests outlined in ISO/TR 9790. Then, the biofidelity ratings of the full human body model and different body parts were evaluated using the ISO/TR 9790 rating method. In a 0–10 rating scale, the resulting rating for the full human body model developed is 8.57, which means a good biofidelity. As to different body parts, the biofidelity ratings of the head and shoulder are excellent, while those of the neck, thorax, abdomen and pelvis are good. The resulting ratings indicate that the human body model developed in this study is capable of investigating the side-impact responses of and injuries to occupants’ different body parts. In addition, the rating of the model was compared with those of the other human body finite element models and several side-impact dummy models. This allows us to assess the robustness of our model and to identify necessary improvements.


1991 ◽  
Author(s):  
Dainius Dalmotas ◽  
Alan German ◽  
Zygmunt M. Gorski ◽  
Robert N. Green ◽  
Edwin S. Nowak

2015 ◽  
Vol 1105 ◽  
pp. 62-66 ◽  
Author(s):  
Saud Aldajah ◽  
Yousef Haik ◽  
Kamal Moustafa ◽  
Ammar Alomari

Nanocomposites attracted the attention of scientists due to their superior mechanical, thermal, chemical and electrical properties. This research studied the impact of adding carbon nanotubes (CNTs) to the woven Kevlar laminated composites on the high and low speed impact characteristics. Different percentages of CNTs were added to the woven Kevlar-Vinylester composite materials. An in-house developed drop weight testing apparatus was utilized for the low speed impact testing. Two different concentrations of the CNTs were added to a 15-layer woven Kevlar laminates, 0.32 wt% and 0.8 wt%. The results showed that: The 0.32 wt % CNT sample enhanced the interlaminar strength of the composite without enhancing the energy absorption capacity whereas, the 0.8 wt % CNT sample did not improve the impact resistance of the Kevlar composite.For the high speed impact tests, a bulletproof vest was prepared using woven Kevlar, resin, and CNTs at 1.5 w% percentage. The ballistic shooting was carried out by a professional shooter using a 30 caliber and 9 mm bullets for the tests. The CNT bulletproof sample bounced back the 30 caliber copper alloy bullet with no penetration.


Sign in / Sign up

Export Citation Format

Share Document