High and Low Speed Impact Characteristics of Nanocomposites

2015 ◽  
Vol 1105 ◽  
pp. 62-66 ◽  
Author(s):  
Saud Aldajah ◽  
Yousef Haik ◽  
Kamal Moustafa ◽  
Ammar Alomari

Nanocomposites attracted the attention of scientists due to their superior mechanical, thermal, chemical and electrical properties. This research studied the impact of adding carbon nanotubes (CNTs) to the woven Kevlar laminated composites on the high and low speed impact characteristics. Different percentages of CNTs were added to the woven Kevlar-Vinylester composite materials. An in-house developed drop weight testing apparatus was utilized for the low speed impact testing. Two different concentrations of the CNTs were added to a 15-layer woven Kevlar laminates, 0.32 wt% and 0.8 wt%. The results showed that: The 0.32 wt % CNT sample enhanced the interlaminar strength of the composite without enhancing the energy absorption capacity whereas, the 0.8 wt % CNT sample did not improve the impact resistance of the Kevlar composite.For the high speed impact tests, a bulletproof vest was prepared using woven Kevlar, resin, and CNTs at 1.5 w% percentage. The ballistic shooting was carried out by a professional shooter using a 30 caliber and 9 mm bullets for the tests. The CNT bulletproof sample bounced back the 30 caliber copper alloy bullet with no penetration.

RSC Advances ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1777-1787
Author(s):  
Zehui Xiang ◽  
Fan Hu ◽  
Xueyan Wu ◽  
Fugang Qi ◽  
Biao Zhang ◽  
...  

Schematic diagram of multi-walled carbon nanotube composite ionic liquid synergistically enhancing the high-speed impact resistance of polyurethane elastomer.


2016 ◽  
Vol 26 (7) ◽  
pp. 989-1002 ◽  
Author(s):  
Yasser Rostamiyan ◽  
Amir Ferasat

This study empirically investigates the mechanical strength and high-speed impact resistance of polycarbonate matrix reinforced with different amounts of nano-ZrO2. In order to enhance the mechanical strength of polycarbonate, especially the impact resistance, the nanoparticles were added to polycarbonate matrix as filler with the ratios of 1, 2, 3 and 5% of the composite’s total weight. Transmission electron microscope was utilized for the observation of microscopic structure of the composites, and it revealed an exceptional homogeneous mixture of ZrO2 particles in the polycarbonate matrix. From the results of the tests, it was figured out that adding 1–3 wt% of nano-ZrO2 into polycarbonate remarkably increased the impact resistance of the composite. The results also showed that adding 1 and 2 wt% of nano-ZrO2 to polycarbonate had the most desirable effects on the enhancement of tensile, bending and buckling strength; however, the composites with 3 wt% of nano-ZrO2 had the greatest Izod impact and high-velocity impact resistance. Finally for the impact tests, it was revealed that adding large amounts of nano-ZrO2 (more than 3 wt%) would decrease the mechanical strength of ZrO2/polycarbonate nanocomposite specimens; thus, the fracture occurred, while less energy was absorbed compared with the neat polymer.


Author(s):  
Kamal Baral ◽  
Jovan Tatar ◽  
Qian Zhang

Engineered cementitious composites (ECC) is a class of high-performance fiber-reinforced cementitious composites featuring metal-like strain-hardening behavior under tension and high ductility. The highly ductile behavior of ECC often results in high impact resistance and energy absorption capacity, which make ECC suitable for applications in structures that are prone to impact damages, like exterior bridge girders, bridge piers, and crash barriers. In a recent study, a new ECC mixture has been developed using domestically available polyvinyl alcohol (PVA) fibers and regular river sand in replacement of imported PVA fibers and fine silica sand that are normally used in other ECC mixtures. The newly developed mixture, with improved local accessibility of raw materials, enables structural-scale applications of ECC in transportation infrastructures. To evaluate the suitability of the mixture for impact-resistant structures, in this paper, the tensile and flexural behavior of the newly developed material were characterized under pseudo-static loading and high strain-rate loadings up to 10−1 s−1. Direct drop-weight impact test was also conducted to assess the impact resistance and energy absorption capacity of the material. It was ensured that the ECC mixture maintains high tensile strain capacity above 1.8% under all tested strain rates. Regarding the damage characteristics, energy absorption capacity and load-bearing capacity during repeated impact loadings, ECC was found to have 75% higher energy dissipation capacity compared with regular reinforced concrete specimens and superior damage tolerance. The research results demonstrated that the newly developed ECC has a great potential to improve the impact resistance of transportation infrastructures.


Author(s):  
Shi Hu ◽  
Huaming Tang ◽  
Shenyao Han

AbstractIn this paper, polyvinyl chloride (PVC) coarse aggregate with different mixing contents is used to solve the problems of plastic pollution, low energy absorption capacity and poor damage integrity, which provides an important reference for PVC plastic concrete used in the initial support structures of highway tunnels and coal mine roadway. At the same time, the energy absorption characteristics and their relationship under different impact loads are studied, which provides an important reference for predicting the energy absorption characteristics of concrete under other PVC aggregate content or higher impact speed. This study replaced natural coarse aggregate in concrete with different contents and equal volume of well-graded flaky PVC particles obtained by crushing PVC soft board. Also, slump, compression, and splitting strength tests, a free falling low-speed impact test of steel balls and a high-speed impact compression test of split Hopkinson pressure bar (SHPB) were carried out. Results demonstrate that the static and dynamic compressive strength decreases substantially, and the elastic modulus and slump decrease slowly with the increase of the mixing amount of PVC aggregate (0–30%). However, the energy absorption rate under low-speed impact and the specific energy absorption per MPa under high-speed impact increase obviously, indicating that the energy absorption capacity is significantly enhanced. Regardless of the mixing amount of PVC aggregate, greater strain rate can significantly enhance the dynamic compressive strength and the specific energy absorption per MPa. After the uniaxial compression test or the SHPB impact test, the relative integrity of the specimen is positively correlated with the mixing amount of PVC aggregate. In addition, the specimens are seriously damaged with the increase of the impact strain rate. When the PVC aggregate content is 20%, the compressive strength and splitting strength of concrete are 33.8 MPa and 3.26 MPa, respectively, the slump is 165 mm, the energy absorption rate under low-speed impact is 89.5%, the dynamic compressive strength under 0.65 Mpa impact air pressure is 58.77 mpa, and the specific energy absorption value per MPa is 13.33, which meets the requirements of shotcrete used in tunnel, roadway support and other impact loads. There is a linear relationship between the energy absorption characteristics under low-speed impact and high-speed impact. The greater the impact pressure, the larger the slope of the fitting straight line. The slope and intercept of the fitting line also show a good linear relationship with the increase of impact pressure. The conclusions can be used to predict the energy absorption characteristics under different PVC aggregate content or higher-speed impact pressure, which can provide important reference for safer, more economical, and environmental protection engineering structure design.


2007 ◽  
Vol 539-543 ◽  
pp. 1863-1867 ◽  
Author(s):  
X.F. Tao ◽  
Li Ping Zhang ◽  
Y.Y. Zhao

This paper investigated the mechanical response of porous copper manufactured by LCS under three-point bending and Charpy impact conditions. The effects of the compaction pressure and K2CO3 particle size used in producing the porous copper samples and the relative density of the samples were studied. The apparent modulus, flexural strength and energy absorption capacity in three-point bending tests increased exponentially with increasing relative density. The impact strength was not markedly sensitive to relative density and had values within 7 – 9 kJ/m2 for the relative densities in the range 0.17 – 0.31. The amount of energy absorbed by a porous copper sample in the impact test was much higher than that absorbed in the three-point bending test, impling that loading strain rate had a significant effect on the deformation mechanisms. Increasing compaction pressure and increasing K2CO3 particle size resulted in significant increases in the flexural strength and the bending energy absorption capacity, both owing to the reduced sintering defects.


Author(s):  
Yangqing Dou ◽  
Yucheng Liu ◽  
Wilburn Whittington ◽  
Jonathan Miller

Coefficients and constants of a microstructure-based internal state variable (ISV) plasticity damage model for pure copper have been calibrated and used for damage modeling and simulation. Experimental stress-strain curves obtained from Cu samples at different strain rate and temperature levels provide a benchmark for the calibration work. Instron quasi-static tester and split-Hopkinson pressure bar are used to obtain low-to-high strain rates. Calibration process and techniques are described in this paper. The calibrated material model is used for high-speed impact analysis to predict the impact properties of Cu. In the numerical impact scenario, a 100 mm by 100 mm Cu plate with a thickness of 10 mm will be penetrated by a 50 mm-long Ni rod with a diameter of 10mm. The thickness of 10 mm was selected for the Cu plate so that the Ni-Cu penetration through the thickness can be well observed through the simulations and the effects of the ductility of Cu on its plasticity deformation during the penetration can be displayed. Also, that thickness had been used by some researchers when investigating penetration mechanics of other materials. Therefore the penetration resistance of Cu can be compared to that of other metallic materials based on the simulation results obtained from this study. Through this study, the efficiency of this ISV model in simulating high-speed impact process is verified. Functions and roles of each of material constant in that model are also demonstrated.


2012 ◽  
Vol 445 ◽  
pp. 959-964
Author(s):  
Z. Khan ◽  
Necar Merah ◽  
A. Bazoune ◽  
S. Furquan

Low velocity drop weight impact testing of CPVC pipes was conducted on 160 mm long pipe sections obtained from 4-inch (100 mm) diameter schedule 80 pipes. Impact test were carried out for the base (as received) pipes and after their exposure to out door natural weathering conditions in Dhahran, Saudi Arabia. The results of the impact testing on the natural (outdoor exposure) broadly suggest that the natural outdoor exposures produce no change in the impact resistance of CPVC pipe material for the impact events carrying low incident energies of 10 and 20J. At the impact energies of 35 and 50J the natural outdoor exposures appear to cause appreciable degradation in the impact resistance of the CPVC pipe material. This degradation is noted only for the longer exposure periods of 12 and 18 months.


2018 ◽  
Vol 861 ◽  
Author(s):  
Ishan Sharma

We present a simple hydrodynamical model for the high-speed impact of slender bodies into frictional geomaterials such as soils and clays. We model these materials as non-smooth, complex fluids. Our model predicts the evolution of the impactor’s speed and the final penetration depth given the initial impact speed, and the material and geometric parameters of the impactor and the impacted material. As an application, we investigate the impact of deep-penetrating anchors into seabeds. Our theoretical predictions are found to match field and laboratory data very well.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Srinivasan Karunanithi

The study was focused on slag based geopolymer concrete with the addition of steel fibre. The slag based geopolymer concrete was under shear load and sudden impact load to determine its response. The punching shear represents the load dissipation of the material and the energy absorption capacity of the geopolymer concrete to impact load. The various percentage of steel fibre in the slag based geopolymer concrete was 0.5%, 1.0%, and 1.5%. Overall the dosage 0.5% of steel fibre reinforced slag based geopolymer shows better results with a punching shear of 224 kN and 1.0% of steel fibre incorporated geopolymer concrete had the better energy absorption capacity with 3774.40 N·m for first crack toughness and 4123.88 N·m for ultimate failure toughness.


2019 ◽  
Vol 54 (7-8) ◽  
pp. 408-415 ◽  
Author(s):  
Marta Palomar ◽  
Ricardo Belda ◽  
Eugenio Giner

Head trauma following a ballistic impact in a helmeted head is assessed in this work by means of finite element models. Both the helmet and the head models employed were validated against experimental high-rate impact tests in a previous work. Four different composite ply configurations were tested on the helmet shell, and the energy absorption and the injury outcome resulting from a high-speed impact with full metal jacket bullets were computed. Results reveal that hybrid aramid–polyethylene configurations do not prevent bullet penetration at high velocities, while 16-layer aramid configurations are superior in dissipating the energy absorbed from the impact. The fabric orientation of these laminates proved to be determinant for the injury outcome, as maintaining the same orientations for all the layers led to basilar skull fractures (dangerous), while alternating orientation of the adjacent plies resulted in an undamaged skull. To the authors knowledge, no previous work in the literature has analysed numerically the influence of different stack configurations on a single combat helmet composite shell on human head trauma.


Sign in / Sign up

Export Citation Format

Share Document