Efficient Overrunning Alternator Pulley (OAP) Design and Development for Robust FEAD System, Reduction of Fuel Consumption and CO2 for Model Gasoline Engine

2021 ◽  
Author(s):  
Pratik Jagtap ◽  
Krishna K Rathore
2011 ◽  
Vol 230-232 ◽  
pp. 178-182
Author(s):  
Bai Xue Fu ◽  
Sheng Hai Hu

Sensor technology and computer control technology are applied to automobile fuel consumption testing in the automobile industry developed countries, the function and precision of the test are developing and perfecting continually. In our country, automobile fuel consumption test mainly applies ordinary consumption test devices, that test item are single-chip, which is applied for testing the flow of time. The display of method mainly based on the pointer instrument and partially on circuit control, so the maintenance and reliability of the test does not excellent. We do research and develop the intelligent one which is called quick testing instrument for automobile fuel consumption, which applies sensor technology, computer control technology and advanced instrument technology, that can be applied for the testing for automobile fuel consumption and data show. It can improve the measurement precision of automobile fuel consumption and degree of automation, with the down cost as high cost-effective consequences. The test instrument can be used for testing instantaneous fuel consumption, average fuel consumption and accumulative total consumption of gasoline engine and diesel engine.


2011 ◽  
Vol 317-319 ◽  
pp. 1999-2006
Author(s):  
Yu Wan ◽  
Ai Min Du ◽  
Da Shao ◽  
Guo Qiang Li

According to the boost mathematical model verified by experiments, the valve train of traditional gasoline engine is optimized and improved to achieve extended expansion cycle. The simulation results of extended expansion gasoline engine shows that the extended expansion gasoline engine has a better economic performance, compared to traditional gasoline engines. The average brake special fuel consumption (BSFC) can reduce 22.78 g / kW•h by LIVC, but the negative impacts of extended expansion gasoline engine restrict the potential of extended expansion gasoline engine. This paper analyzes the extended expansion gasoline engine performance under the influence of LIVC, discusses the way to further improve extended expansion gasoline engine performance.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110671
Author(s):  
Wei Duan ◽  
Zhaoming Huang ◽  
Hong Chen ◽  
Ping Tang ◽  
Li Wang ◽  
...  

Pre-chamber jet ignition is a promising way to improve fuel consumption of gasoline engine. A small volume passive pre-chamber was tested at a 1.5L turbocharged GDI engine. Combustion and emission characteristics of passive pre-chamber at low-speed WOT and part load were studied. Besides, the combustion stability of the passive pre-chamber at idle operation has also been studied. The results show that at 1500 r/min WOT, compared with the traditional spark ignition, the combustion phase of pre-chamber is advanced by 7.1°CA, the effective fuel consumption is reduced by 24 g/kW h, and the maximum pressure rise rate is increased by 0.09 MPa/°CA. The knock tendency can be relieved by pre-chamber ignition. At part load of 2000 r/min, pre-chamber ignition can enhance the combustion process and improve the combustion stability. The fuel consumption of pre-chamber ignition increases slightly at low load, but decreases significantly at high load. Compared with the traditional spark ignition, the NOx emissions of pre-chamber increase significantly, with a maximum increase of about 15%; the HC emissions decrease, and the highest decrease is about 36%. But there is no significant difference in CO emissions between pre-chamber ignition and spark plug ignition. The intake valve opening timing has a significant influence on the pre-chamber combustion stability at idle operation. With the delay of the pre-chamber intake valve opening timing, the CoV is reduced and can be kept within the CoV limit.


2015 ◽  
Vol 77 (8) ◽  
Author(s):  
S. F. Zainal Abidin ◽  
M. F. Muhamad Said ◽  
Z. Abdul Latiff ◽  
I. Zahari ◽  
M. Said

There are many technologies that being developed to increase the efficiency of internal combustion engines as well as reducing their fuel consumption.  In this paper, the main area of focus is on cylinder deactivation (CDA) technology. CDA is mostly being applied on multi cylinders engines. CDA has the advantage to improve fuel consumption by reducing pumping losses at part load engine conditions. Here, the application of CDA on 1.6L four cylinders gasoline engine is studied. One-dimensional (1D) engine modeling work is performed to investigate the effect of intake valve strategy on engine performance with CDA. 1D engine model is constructed based on the 1.6L actual engine geometries. The model is simulated at various engine speeds at full load conditions. The simulated results show that the constructed model is well correlated to measured data. This correlated model is then used to investigate the CDA application at part load conditions. Also, the effects on the in-cylinder combustion as well as pumping losses are presented. The study shows that the effect of intake valve strategy is very significant on engine performance. Pumping losses is found to be reduced, thus improve fuel consumption and engine efficiency.


2012 ◽  
Vol 500 ◽  
pp. 223-229 ◽  
Author(s):  
Peng Qi Zhang ◽  
Dong Hui Zhao ◽  
Peng Wu ◽  
Yin Yan Wang

This article take the Dongan 465Q non-supercharged engine as the research object, the simulation model is built by GT-POWER and the corresponding test bench is set up. The simulation error is less than 3%, which indicates that the parameters of this model is correct, and can be used for further study of the gasoline engine. The supercharger, Garrett GT12, is selected by the matching calculation. The non-supercharged 465Q engine is modified as a turbocharged engine. The test results show that the power and the fuel consumption of the turbocharged engine is improved obviously, whose power is increased by 48% and fuel consumption is reduced by 4%.


Author(s):  
Eid S. Mohamed ◽  
Mohamed I. Khalil ◽  
Shawki A. Abouel-Seoud

Modern integrated powertrains allow great scope for improvements in driveability, emissions and fuel consumption by optimizing the engine speed and load selection to deliver the demanded power. The aim of this study is to assess the exhaust emissions, road performance, road acceleration and fuel consumption of gasoline engine powered vehicle. The proposed emission index and fuel consumption rate are verified through chassis dynamometer tests using the urban part of European drive cycle (ECE-15). A midsize saloon vehicle equipped with an integrated gasoline engine with manual transmission (MT), automatic transmission (AT) and continuously variable transmission (CVT) powertrains. The results indicate that most of the carbon monoxide, carbon dioxide and unburned hydrocarbons emission, driveability and fuel consumption rate were improved for the CVT powertrains.


2008 ◽  
Vol 20 (1) ◽  
pp. 75-81 ◽  
Author(s):  
Kouki Yamaji ◽  
◽  
Hirokazu Suzuki ◽  

With progress in internal combustion engine fuel economy, variable cylinder systems have attracted attention. We measured fuel consumption in cylinder cutoff by stopping the injector alone, collected data changing the location and number of cutoff cylinders and when varying the cutoff cylinder, and compared the difference in fuel cost reduction. A transistor is inserted serially into the injector control circuit of the electronic control unit (ECU). By controlling the transistor via microcomputer, the injector is turned on or off independently from ECU control in obtain cylinder cutoff. The amount of fuel consumption is measured using enhancement mode of a failure diagnostic device based on the OBD II standard to collect injection time and rotational speed of the injector for a predetermined time and calculated based on this data. We confirmed that by stopping the injector alone, fuel consumption was reduced 6 to 22% and is reduced when the cutoff cylinder is varied.


2019 ◽  
Vol 8 (3) ◽  
pp. 5294-5300 ◽  

Country’s economy depend on well-maintained roads as they are major means of transportation. It becomes essential to identify pothole and humps in order to avoid accidents and damages to the vehicles that is caused because of distress to drivers and also to save fuel consumption. In this regard, this work presents a simple solution to detect potholes and humps and hence avoid accidents and help drivers. Potholes are detected using Image Processing Technique and Ultrasonic Sensors are used to detect humps. Controlling device used is Raspberry Pi. The system acquires the geographical position of potholes using Wi-Fi and transmits it to authorities to take corrective measures


Sign in / Sign up

Export Citation Format

Share Document