INFLUENCE OF IMPELLER AND DIFFUSER CHARACTERISTICS AND MATCHING ON RADIAL COMPRESSOR PERFORMANCE

1961 ◽  
Author(s):  
Colin Rodgers
Author(s):  
K. Mathioudakis ◽  
A. Tsalavoutas

An experimental study of the influence of mechanical alterations in a stage of a radial compressor with a vaned diffuser is presented. The mechanical alterations considered correspond to changes which can be produced by the occurrence of faults or deterioration of the compressor. They include the insertion of an inlet obstruction, an obstruction in a diffuser passage, increase of impeller tip clearance, and impeller fouling. The change in the compressor performance parameters, from the reference condition, is established from the experimental results. These changes are referred to the overall stage performance but also to its components, impeller, and diffuser. In order to establish diagnostic abilities, appropriate indices are introduced. The behaviour of these indices is related to the altered stage conditions and the possibility of using them for identifying the stage condition is demonstrated.


Author(s):  
Colin Rodgers

The aerodynamic development of a small high-speed radial compressor for the US Army 10-kw turboalternator is discussed, including initial performance deficiencies arising from blade contour discrepancies. Design performance requirements were attained by correcting these discrepancies and subsequently were exceeded with further geometry refinements. Aerodynamic testing included an investigation concerning the effect of shroud axial clearance on compressor performance and showed that abradable shrouds are desirable for small compressors.


2020 ◽  
Author(s):  
Putra Adnan Fadilah ◽  
Firman Hartono ◽  
Dadang Furqon Erawan

Author(s):  
S U Lee ◽  
D Robb ◽  
C Besant

A radial compressor has been designed at Imperial College for cooling a high-speed generator (HSG) coupled directly to a small gas turbine engine to produce 100kW electric power. The compressor has a significant influence on the overall dynamics of the generator. Therefore, it is designed to be lightweight for rotor-dynamic reasons together with reasonable aerodynamic efficiency. An experimental rig for the compressor performance testing was also designed. In order to operate this rig safely, it is very important to be able to predict and analyse its dynamic behaviour. For this purpose, a systematic procedure was used to develop a finite element (FE) model to predict natural frequencies under operating conditions. In the procedure, the relationship between FE analyses, modal analyses and results of a running test are established. Vibration analyses of the compressor rig using the proposed procedure are carried out. Finally, the results of computations and experiments for the rig are presented and compared.


Author(s):  
Fred Mendonça ◽  
Onur Baris ◽  
Geoff Capon

This paper focuses on the application of CFD to the prediction of radial compressor aeroacoustics. It concentrates mainly on automotive turbocharger operations in the low mass-flow range where blade leading-edge and tip separation reduce the compressor performance and induce transient flow behaviour. Whereas the blade-passing is tonal and at high frequency, usually beyond the human hearing range, transience in the flow are turbulence-dominated, broad-band in nature, and in magnitude a significant source of aeroacoustics which appears well within the range of peak human hearing (1–5kHz). Other noise sources occur due to distortions in the flow upstream of the compressor face, and rotating stall. The simulation methodology enumerated here pays attention to all the above flow-induced aeroacoustics. Due consideration is given to turbulence modelling, to ensure that both the narrow-band and broad-band sources are directly resolved in the CFD. Appropriate discretisation practices are adopted, so as to capture both turbulent-convection and sound-propagation mechanisms. Pressure-wave non-reflective boundary conditions are applied to the computational boundaries to remove any artificial resonances in the domain. STAR-CCM+, the commercial CFD code used here, was previously benchmarked against experimental data for the same compressor under ideal installation conditions, then the compressor performance assessed under real installation conditions [1]. The main foci of the studies reported here are to exploit possible improvements in modelling of the device performance and efficiency curves using more detailed wall modelling, comparing low-y+ versus high-y+ wall resolution, and to explore the viability for transient CFD calculations to capture the noise sources in the compressor at the challenging low mass flow end of the performance characteristic.


Author(s):  
Ioannis Kolias ◽  
Alexios Alexiou ◽  
Nikolaos Aretakis ◽  
Konstantinos Mathioudakis

A mean-line compressor performance calculation method is presented that covers the entire operating range, including the choked region of the map. It can be directly integrated into overall engine performance models, as it is developed in the same simulation environment. The code materializing the model can inherit the same interfaces, fluid models, and solvers, as the engine cycle model, allowing consistent, transparent, and robust simulations. In order to deal with convergence problems when the compressor operates close to or within the choked operation region, an approach to model choking conditions at blade row and overall compressor level is proposed. The choked portion of the compressor characteristics map is thus numerically established, allowing full knowledge and handling of inter-stage flow conditions. Such choking modelling capabilities are illustrated, for the first time in the open literature, for the case of multi-stage compressors. Integration capabilities of the 1D code within an overall engine model are demonstrated through steady state and transient simulations of a contemporary turbofan layout. Advantages offered by this approach are discussed, while comparison of using alternative approaches for representing compressor performance in overall engine models is discussed.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Puyu Cao ◽  
Rui Zhu

Parallel compressor theory (PCT) is commonly used to estimate effects of inlet distortion on compressor performance. As well as compressor, the actual inflow to pump is also nonuniform and unfavorable for performances. Nowadays, insufficient understanding of nonuniform inflow effects on pump performance restricts its development. Therefore, this paper applies PCT to predict external characteristics and evaluate internal flow instability of waterjet pump under nonuniform inflow. According to features of nonuniform inflow, the traditional PCT is modified and makes waterjet pump sub-divided into two circumferential tubes owning same performances but with different inlet velocity (representing nonuniform inflow). Above all, numerical simulation has been conducted to validated the applicability and accuracy of PCT in head prediction of waterjet pump under nonuniform inflow, since area-weighted sum of each tube head (i.e., theoretical pump head) is highly consistent with simulated result. Moreover, based on identifications of when and which tube occurs stall, PCT evaluates four stall behaviors of waterjet pump: partial deep stall, partial stall, pre-stall and full stall. Furthermore, different stall behavior generates different interactions between head variation of each tube, resulting in a multi-segment head curve under nonuniform inflow. The modified PCT with associated physical interpretations are expected to provide a sufficient understanding of nonuniform inflow effects on pump performances.


2021 ◽  
Vol 11 (2) ◽  
pp. 780
Author(s):  
Dong Liang ◽  
Xingmin Gui ◽  
Donghai Jin

In order to investigate the effect of seal cavity leakage flow on a compressor’s performance and the interaction mechanism between the leakage flow and the main flow, a one-stage compressor with a cavity under the shrouded stator was numerically simulated using an inhouse circumferentially averaged through flow program. The leakage flow from the shrouded stator cavity was calculated simultaneously with main flow in an integrated manner. The results indicate that the seal cavity leakage flow has a significant impact on the overall performance of the compressor. For a leakage of 0.2% of incoming flow, the decrease in the total pressure ratio was 2% and the reduction of efficiency was 1.9 points. Spanwise distribution of the flow field variables of the shrouded stator shows that the leakage flow leads to an increased flow blockage near the hub, resulting in drop of stator performance, as well as a certain destructive effect on the flow field of the main passage.


Sign in / Sign up

Export Citation Format

Share Document