The Influence of Initial Fuel Temperature on Ignition Delay

1982 ◽  
Author(s):  
L. O. Hoppie
Trudy NAMI ◽  
2021 ◽  
pp. 74-86
Author(s):  
G. G. Ter-Mkrtich'yan

Introduction (problem statement and relevance). Hydrocarbon emissions from vaporizationtank fuel contribute significantly to the total emissions of hazardous substances from vehicles equipped with spark ignition engines. To meet the established standards for limiting hydrocarbon emissions caused by evaporation, all modern vehicles use fuel vapor recovery systems, the optimal parameters of which require the availability and application of mathematical models and methods for their determination.The purpose of the research was to develop a model of vapor generation processes in the car fuel tank and a methodology for determining the main quantitative parameters of the vapor-air mixture.Methodology and research methods. The analysis of the processes of vapor generation in the fuel tank was carried out. It was shown that the mass of hydrocarbons generated in the steam space was directly proportional to its volume and did not depend on the amount of fuel in the tank.Scientific novelty and results. New analytical dependences of the vaporization amount on the saturated vapor pressure, barometric pressure, initial fuel temperature and fuel heating during parking have been obtained.Practical significance. A formula was obtained to estimate the temperature of gasoline boiling starting in the tank, depending on the altitude above sea level and the volatility of gasoline, determined by the pressure of saturated vapors. Using the new equations, the vaporization analysis in real situations (parking, idling, refueling, explosive concentration of vapors) was carried out.


2018 ◽  
Vol 31 (5) ◽  
pp. 436-449 ◽  
Author(s):  
Depeng Kong ◽  
Zhen Zhang ◽  
Ping Ping ◽  
Xu He ◽  
Hanbing Yang

2020 ◽  
Author(s):  
Daisuke Kawano ◽  
Kentaro Tsukiji ◽  
Hiroki Saito ◽  
Dai Matsuda ◽  
Eriko Matsumura ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7027
Author(s):  
Yankovsky Stanislav ◽  
Tolokol’nikov Anton ◽  
Berezikov Nikolay ◽  
Gubin Vladimir

In this paper, the properties of ignition of mixed fuel pellets formed on the basis of fairly typical energy coal and wood industry waste in the form of cedar husks are experimentally established. The technical characteristics of the initial fuel components and the mixtures based on them, the ignition delay times for different mass concentrations of biomass in coal, and the composition of flue gases formed during the thermal decomposition of these mixed fuels and their base components were determined. Pellets of mixed fuels were made by a hydraulic press. The experiments were performed in an air environment at temperatures from 600 °C to 800 °C. Recording of the processes of pellet ignition and combustion was carried out using a high-speed video camera with an image format of 1024 × 1024 pixels, and a frame rate up to 500 frames per second. The analysis of the flue gas composition was performed using a Test-1 factory gas analyzer (BONER Co.). It was found that the increase in the share of biomass up to 50% in the mixed fuel led to a significant reduction in the ignition delay time to less than 1 s and the sequestration of sulfur oxide emissions by 37.6% and of nitrogen oxides by 3.8% in the studied granular mixed fuels.


1973 ◽  
Vol 187 (1) ◽  
pp. 395-404 ◽  
Author(s):  
R. W. Tempk-Pediani

The effect of pre-injection fuel temperature upon the ignition delay and soot emission has been investigated on an i.d.i. engine running on diesel oil. Effects of evaporation in the engine cycle, at both subcritical and supercritical pressures, are discussed and attention focused on the probable attainment of the critical temperature by liquid droplets in certain ambient conditions. Stress is laid on the future need concurrently to optimize the injection equipment and the level of air swirl to realize the potential of fuel preheating.


2014 ◽  
Vol 1016 ◽  
pp. 587-591 ◽  
Author(s):  
Man Hou Li ◽  
Shou Xiang Lu ◽  
Jin Guo ◽  
Kwok Leung Tsui

Flame spreading over liquid fuels is a common phenomenon involving in accidental fuel leakage in aircraft crash or oil tanker which may result in many casualties and economic losses. Comparative experiments are conducted concerning flame spread over aviation kerosene (RP5) and 0# diesel at a variety of initial fuel temperatures. The threshold value of initial fuel temperature for liquid-phase and gas-phase controlled flame spread is approximately 17 °C larger than liquid’s flashpoint for both oils. For a given initial fuel temperature, due to low volatility and ignitability of 0# diesel, its flame spread rate is smaller than that of RP5, while the length of the horizontal subsurface convection flow is larger. Given the difference in flame speed, fire accidents for RP5 are potentially more hazardous than those of 0# diesel. Moreover, the variation trend of subsurface convection flow length falls nearly linearly with the initial fuel temperature for both fuels.


1973 ◽  
Vol 187 (1) ◽  
pp. 395-404 ◽  
Author(s):  
R. W. Tempk-Pediani

The effect of pre-injection fuel temperature upon the ignition delay and soot emission has been investigated on an i.d.i. engine running on diesel oil. Effects of evaporation in the engine cycle, at both subcritical and supercritical pressures, are discussed and attention focused on the probable attainment of the critical temperature by liquid droplets in certain ambient conditions. Stress is laid on the future need concurrently to optimize the injection equipment and the level of air swirl to realize the potential of fuel preheating.


2000 ◽  
Vol 1 (1) ◽  
pp. 1-27 ◽  
Author(s):  
A. M. Lippert ◽  
D. W. Stanton ◽  
C. J. Rutland ◽  
W. L. H. Hallett ◽  
R. D. Reitz

The complex physical processes occurring during cold starting of diesel engines mandate the use of advanced physical submodels in computations. The present study utilizes a continuous probability density function to represent more fully the range of compositions of commercial fuels. The model was applied to singledroplet calculations to validate the predictions against experimental results. Analysis of a high-pressure diesel spray showed axial composition gradients within the spray. Previous wall-film modelling was extended to include the continuous multicomponent fuel representation. Using these models, the cold-start behaviour of a heavy-duty diesel engine was analysed. The predictions show that multicomponent fuel modelling is critical to capturing realistic vaporization trends. In addition, the spray-film interaction modelling is crucial to capturing the spray impingement and subsequent secondary atomization. Heating the intake air temperature was shown to result in reduced ignition delay and accelerated vaporization. Increasing the fuel temperature increased vaporization prior to and away from the initial heat release. Increasing the injection pressure increased vaporization without much change in the ignition delay. Split injections, with 75 per cent of the fuel contained in the second pulse, displayed a substantial reduction in ignition delay due to ignition of the first pulse. The timing of the first injection was found to be an important parameter due to differences in the spray impingement behaviour with different timings.


1977 ◽  
Vol 99 (1) ◽  
pp. 83-87 ◽  
Author(s):  
L. J. Spadaccini

A problem to be treated in the design of prevaporizing/premixing combustors for use in advanced air-breathing engines is autoignition of the fuel-air mixture prior to injection into the primary combustion zone. The high combustor inlet temperatures and pressures of these engines can promote preignition and flame stabilization in premixing passages. However, data regarding the ignition delay characteristics of hydrocarbon fuels of interest, e.g., JP-type fuels and fuel oils, under conditions representative of those encountered in operating engines are not presently available in the literature. Therefore, a research program was undertaken to develop design data and criteria which will permit evaluation of the autoignition characteristics of hydrocarbon fuel-air mixtures at elevated pressures and temperatures. Measurements of the autoignition characteristics of JP-4, No. 2 fuel oil, and No. 6 fuel oil were made in dry air at temperatures in the range 750°F (400°C) to 1100°F (593°C) and at pressures in the range 100 psia (6.8 atm) to 240 psia (16.3 atm). Tests were performed in a steady-flow apparatus in which the pressure, temperature, and mixture flow rate were adjusted to induce autoignition and maintain a stationary flame front. The ignition delay time was considered equivalent to the residence time of the fuel-air mixture between the point of injection and the axial position of the flame, and it was computed from the average flow velocity. The effects of a number of physical factors, including air pressure and temperature, fuel temperature and concentration, and initial spray characteristics (e.g., droplet size and size distribution), upon the ignition characteristics were evaluated.


Sign in / Sign up

Export Citation Format

Share Document